已知数列满足递推式an=2a(n-1)+1(n>=2),其中a3=7.求通项公式;已知数列bn满足bn=n/(an+1)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/15 23:13:14
已知数列满足递推式an=2a(n-1)+1(n>=2),其中a3=7.求通项公式;已知数列bn满足bn=n/(an+1),求bn的前n项和S
1.
a3=2a2+1 a2=(a3-1)/2=(7-1)/2=3
a2=2a1+1 a1=(a2-1)/2=(3-1)/2=1
n≥2时,
an=2a(n-1)+1
an +1=2a(n-1)+2=2[a(n-1)+1]
(an +1)/[a(n-1)+1]=2,为定值.
a1 +1=1+1=2
数列{an}是以2为首项,2为公比的等比数列.
an +1=2×2^(n-1)=2ⁿ
an=2ⁿ-1
n=3时,a3=2³-1=8-1=7,同样满足
数列{an}的通项公式为an=2ⁿ-1.
2.
bn=n/(an+1)=n/(2ⁿ-1+1)=n/2ⁿ
Sn=b1+b2+...+bn=1/2+ 2/2²+3/2³+...+n/2ⁿ
(1/2)Sn=1/2²+2/2³+...+(n-1)/2ⁿ+n/2^(n+1)
Sn-(1/2)Sn=(1/2)Sn
=1/2+1/2²+...+1/2ⁿ -n/2^(n+1)
=(1/2)(1-1/2ⁿ)/(1-1/2) -n/2^(n+1)
=1- 1/2ⁿ-n/2^(n+1)
Sn=2 -(n+2)/2ⁿ
a3=2a2+1 a2=(a3-1)/2=(7-1)/2=3
a2=2a1+1 a1=(a2-1)/2=(3-1)/2=1
n≥2时,
an=2a(n-1)+1
an +1=2a(n-1)+2=2[a(n-1)+1]
(an +1)/[a(n-1)+1]=2,为定值.
a1 +1=1+1=2
数列{an}是以2为首项,2为公比的等比数列.
an +1=2×2^(n-1)=2ⁿ
an=2ⁿ-1
n=3时,a3=2³-1=8-1=7,同样满足
数列{an}的通项公式为an=2ⁿ-1.
2.
bn=n/(an+1)=n/(2ⁿ-1+1)=n/2ⁿ
Sn=b1+b2+...+bn=1/2+ 2/2²+3/2³+...+n/2ⁿ
(1/2)Sn=1/2²+2/2³+...+(n-1)/2ⁿ+n/2^(n+1)
Sn-(1/2)Sn=(1/2)Sn
=1/2+1/2²+...+1/2ⁿ -n/2^(n+1)
=(1/2)(1-1/2ⁿ)/(1-1/2) -n/2^(n+1)
=1- 1/2ⁿ-n/2^(n+1)
Sn=2 -(n+2)/2ⁿ
已知数列满足递推式an=2a(n-1)+1(n>=2),其中a3=7.求通项公式;已知数列bn满足bn=n/(an+1)
已知数列满足递推式an=2a(n-1)+1(n>=2),其中a3=7.求通项公式;已知数列bn满足bn=n/(2n+1)
已知数列{an}和{bn}满足关系式:bn=a1+a2+a3+...+an/n(n属于N*) (1)若bn=n^2,求数
已知数列an,bn,cn满足[a(n+1)-an][b(n+1)-bn]=cn
已知数列{an}{bn}满足a1=1,a2=3,b(n+1)/bn=2,bn=a(n+1)-an,(n∈正整数),求数列
已知数列(An)中,A1=1/3,AnA(n-1)=A(n-1)-An(n>=2),数列Bn满足Bn=1/An
已知数列{an},如果数列{bn}满足b1=a1,bn=an+a(n-1)则称数列{bn}是数列{an}的生成数列
已知数列an bn其中a1=1/2数列an的前n项和Sn=n^2an(n≥1) 数列bn满足b1=2 bn+1=2bn
已知数列an,bn满足a1=1,a2=3,(b(n)+1)/bn=2,bn=a(n+1)-an,(n∈正整数)
已知数列{An}与{Bn}满足:A1=λ,A(n+1)=2/3An+n-4,Bn=(-1)^n*(An-3n+21),其
已知数列an和bn满足a1=2,(an)-1=an[a(n+1)-1],bn=an-1,n属于N*
已知数列{an}的前n项和Sn=3×(3/2)^(n-1)-1,数列{bn}满足bn=a(n+1)/log3/2(an+