e^x方dx的不定积分怎么求?
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 04:30:35
e^x方dx的不定积分怎么求?
再问: 是e的x平方次幂 关于x的微分的不定积分
再答: ∫e^〔(x)^2〕dx = x*e^(x^2) - ∫xde^(x^2) =x*e^(x^2) - ∫2*(x^2)*e^(x^2)dx =x*e^(x^2) - ∫(x^2)*e^(x^2)d(x^2) =x*e^(x^2) -(x^4)*e^(x^2) +e^(x^2)
再问: 不对哦
再答: 这个积分好像不能积
再答: 这是一个超越积分(通常也称为不可积),也就是说这个积分的原函数不能用我们所学的任何一种函数来表示.但如果引入新的函数erf(x)=∫[0,x]e^(-t^2)dt,那么该函数的积分就可表示为erf(x)+c. 道 理很简单,比如∫x^ndx,一般的该积分为1/(n+1)x^(n+1),如果不引入lnx,那么∫1/xdx就不可积了.因此对于一些积分,如果不引 入新的函数,那么那些积分就有可能不可积,而且这种情况还会经常遇到.因此对于一些常见的超越积分,一般都定义了相关的新函数. 下面就介绍几个常见的超越积分(不可积积分) 1.∫e^(ax^2)dx(a≠0) 2.∫(sinx)/xdx 3.∫(cosx)/xdx 4.∫sin(x^2)dx 5.∫cos(x^2)dx 6.∫x^n/lnxdx(n≠-1) 7.∫lnx/(x+a)dx(a≠0) 8.∫(sinx)^zdx(z不是整数) 9.∫dx/√(x^4+a)(a≠0) 10.∫√(1+k(sinx)^2)dx(k≠0,k≠-1) 11.∫dx/√(1+k(sinx)^2)(k≠0,k≠-1) 以后凡是看到以上形式的积分,不要继续尝试,因为以上积分都已经被证明了为不可积积分.但是要注意的是,虽然以上积分的原函数不是初等函数.但并不意味着他们的定积分不可求,对于某些特殊点位置的定积分还是有可能算出来的,只不过不能用牛顿-莱布尼茨公式罢了! 比如∫[0,+∞)e^(-x^2)dx=√π/2,此处的积分值就是用二重积分和极限夹逼的方法得出的,而且只能算出(-∞,+∞)或是(0,+∞)上的值,其他的值只能用数值方法算出近似值.
再问: 嗯 我的错