作业帮 > 数学 > 作业

函数f(x)=1+x²分之x²,那么f(1)+f(2)+f(3)+f(4)+.+f(2013)+f(

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 16:58:47
函数f(x)=1+x²分之x²,那么f(1)+f(2)+f(3)+f(4)+.+f(2013)+f(2014)+f(二分之一)+f(3分之1)+f(4分之1)+.+f(2013分之1)+f(2014分之1)=
函数f(x)=1+x²分之x²,那么f(1)+f(2)+f(3)+f(4)+.+f(2013)+f(
碰到这种题不要虚,一看就很简单~
f(x)=x^2/(1+x^2)
记x=a 则f(a)+f(1/a)=a^2/(1+a^2)+(1/a^2)/(1+1/a^2)=a^2/(1+a^2)+1/(1+a^2)=1 这一步是关键
也就是说 随便举个例子f(307)+f(1/307)=1
f(1)+f(2)+f(3)+f(4)+.+f(2013)+f(2014)+f(二分之一)+f(3分之1)+f(4分之1)+.+f(2013分之1)+f(2014分之1)
=f(1)+f(2)+f(二分之一)+f(3)+f(3分之1)+.+f(2014)+f(2014分之1)
=f(1)+1+1+1+1+.+1
=f(1)+2013
又f(1)=1/2
所以原式=4027/2