设f(x,y)为连续函数,交换二次积分I=∫(0,1)x^2dx∫(x,1)(e^(-y^2))dy的积分次序后则I=
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 18:08:04
设f(x,y)为连续函数,交换二次积分I=∫(0,1)x^2dx∫(x,1)(e^(-y^2))dy的积分次序后则I=
I=∫(0,1)x^2dx∫(x,1)(e^(-y^2))dy
=∫(0,1)e^(-y^2)dy∫(0,y)x^2dx
=1/3∫(0,1)y^3*e^(-y^2)dy
=-1/6∫(0,1)y^2*d(e^(-y^2))
=-1/6y^2*e^(-y^2)[0,1]+1/3∫(0,1)y*e^(-y^2)dy
=-1/(6e)-1/6e^(-y^2)[0,1]
=-1/(6e)-1/(6e)+1/6
=1/6-1/(3e)
=∫(0,1)e^(-y^2)dy∫(0,y)x^2dx
=1/3∫(0,1)y^3*e^(-y^2)dy
=-1/6∫(0,1)y^2*d(e^(-y^2))
=-1/6y^2*e^(-y^2)[0,1]+1/3∫(0,1)y*e^(-y^2)dy
=-1/(6e)-1/6e^(-y^2)[0,1]
=-1/(6e)-1/(6e)+1/6
=1/6-1/(3e)
设f(x,y)为连续函数,交换二次积分I=∫(0,1)x^2dx∫(x,1)(e^(-y^2))dy的积分次序后则I=
设f(x,y)为连续函数,交换二次积分I=∫(0,1)dy∫(0,y)f(x,y)dx的积分次序后则I=
f(x,y)是连续函数,交换二次积分∫(0,1)dy=∫(0,根号下1-y)3x^2×y^2dx的积分次序后结果是
设二次积分I=∫(1,0)dy∫(1,y)e^(-x^2)dx,要求改换其积分次序,并计算积分
∫(-1→1)dx∫(x^2→1)f(x,y)dy交换二次积分的积分次序
设f(x,y)中连续函数,交换二次积分∫(0,1)dy∫(π-arcsiny,arcsiny)f(x,y)dx的积分
∫[0,1] dx∫[-x^2,1] f(x,y)dy交换积分次序
交换积分次序:∫(0,1/2)dx∫(x,1-x)f(x,y)dy=
交换二次积分的积分次序(0,1)∫dx﹛(1-x )^1/2,x+2﹜∫f(x,y)dy
交换二次积分的积分次序(0,1)∫dx﹛(1-x² )^1/2,x+2﹜∫f(x,y)dy
交换二次定积分的次序∫(1~o)dy∫(y~0)f(x,y)dx
交换积分次序 ∫(4,0)dx∫(x,2x^0.5)f(x,y)dy