怎样把图像灰度化
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/11 07:02:05
怎样把图像灰度化
由Delphi中的图像灰度化代码看基本图像处理
基础篇]
首先看一段实现24位色图像灰度化转换的代码
procedure Grayscale(const Bitmap:TBitmap);
var
X: Integer;
Y: Integer;
R,G,B,Gray: Byte;
Color: TColor;
begin
for Y := 0 to (Bitmap.Height - 1) do
begin
for X := 0 to (Bitmap.Width - 1) do
begin
Color := Bitmap.Canvas.Pixels[X,Y];
R := Color and $FF;
G := (Color and $FF00) shr 8;
B := (Color and $FF0000) shr 16;
Gray := Trunc(0.3 * R + 0.59 * G + 0.11 * B);
Bitmap.Canvas.Pixels[X,Y] := Gray shl 16 or Gray shl 8 or Gray;
end
end
end;
{这段代码效率是非常低的,但可以方便我们理解同时一些问题}
Delphi的帮助中对TColor已经有了详细的描述,这可以方便我们理解上面的代码!
首先看:
R := Color and $FF;
G := (Color and $FF00) shr 8;
B := (Color and $FF0000) shr 16;
这是段常见的从TColor中提取三原色的代码,但它是什么意思呢?
首先应该知道and是与(.)运算,0.1=0,0.0=0,1.1=1,以取绿色为例:$FF00实际上就是$00FF00,它与一个TColor类型数按位进行与运算后,表示红色和绿色的位都变为了$00,而表示绿色的部分不变(0,1和1进行与运算值都不变),再右移8位,自然就获得了绿色值的8位表示!
再获得三原色的值后,就是计算灰度值,0.3 * Red + 0.59 * Green + 0.11 * Blue 这是求加权平均值的公式.(因为人眼对颜色的敏感度不同,所以权值不同,就像在pf16bit中用了6位表示绿色,其它两种颜色只用了5位,这问题以后另写文章说明)
然后就是像素颜色信息的写回,刚才是右移,现在自然就是左移,而或(+)运算就是(0+1=1,0+0=0,1+1=1),举个简单例子就是:($FF shl 16 = $FF0000) or ($FF shl 8 = $FF00) or $FF = $FFFFFF ,其实这里的或运算当然也可以用 + 代替.
虽然上面的代码实现了24位色图像的灰度化,但当图像比较大时,速度非常慢,为什么?查看相关VCL代码可知调用Bitmap.Canvas.Pixels获取,写入像素的颜色信息实际上是利用了API GetPixel、SetPixel,这种方法是非常低效的!(唯一的好处是在进行一些和颜色无关的操作,如图像的旋转,翻转时不需要因为PixelFormat的不同而修改代码)所以应该换一种更高效的访问像素点数据的方法,如用API GetDIBits、SetDIBits,但这种方法比较复杂,好在Delphi3以后版本的TBitmap中提供了Scanline.利用Scanline可以快速对像素进行访问!
还是以24位色(PixelFormats=pf24bit)为例,可改写为:
procedure Grayscale(const Bitmap:TBitmap);
const
PixelCountMax = 32768;
type
pRGBTripleArray = ^TRGBTripleArray;
TRGBTripleArray = ARRAY[0..PixelCountMax-1] OF TRGBTriple;
var
Row: pRGBTripleArray;
X: Integer;
Y: Integer;
Gray: Byte;
begin
for Y := 0 to (Bitmap.Height - 1) do
begin
Row := Bitmap.ScanLine[Y];
for X := 0 to (Bitmap.Width - 1) do
begin
Gray := Trunc(0.3 * Row^[X].rgbtRed + 0.59 * Row^[X].rgbtGreen + 0.11 * Row^[X].rgbtBlue);
Row^[X].rgbtRed:=Gray;
Row^[X].rgbtGreen:=Gray;
Row^[X].rgbtBlue:=Gray;
end;
end;
end;
上面的例子用了一个TRGBTriple数组
PRGBTriple = ^TRGBTriple;
tagRGBTRIPLE = packed record
rgbtBlue: Byte;
rgbtGreen: Byte;
rgbtRed: Byte;
end;
TRGBTriple = tagRGBTRIPLE;
这种方法会限制位图的大小,但一般不用理会,直接用TBitmap可处理不了那么大的位图
当然也可用指针的移动实现,实测结果这样更快~~~
procedure Grayscale(const Bitmap:TBitmap);
var
X: Integer;
Y: Integer;
PRGB: pRGBTriple;
Gray: Byte;
begin
for Y := 0 to (Bitmap.Height - 1) do
begin
PRGB := Bitmap.ScanLine[Y];
for X := 0 to (Bitmap.Width - 1) do
begin
Gray := Trunc(0.3 * PRGB^.rgbtRed + 0.59 * PRGB^.rgbtGreen + 0.11 * PRGB^.rgbtBlue);
PRGB^.rgbtRed:=Gray;
PRGB^.rgbtGreen:=Gray;
PRGB^.rgbtBlue:=Gray;
Inc(PRGB);
end;
end;
end;
[颜色篇]
在上面提到了,那灰度化代码只能适用于24位色(PixelFormats=pf24bit),为什么?看看记录类型tagRGBTRIPLE,正好24位,所以这样只能处理24位色图!
那怎么处理其他的位图呢?
先对这各种类型的位图做些简单的介绍~~~
pf1bit:
每个像素只需要用一位表示,如调色板定义的是黑白两种颜色(0为黑,1为白),这时只能用位操作访问像素信息!如定义
var P:PByte
for Y := 0 to (Bitmap.Height - 1) do
begin
p := Bitmap.ScanLine[Y];
for X := 0 to (Bitmap.width - 1) DIV 8 + 1 do
begin
p^:=1 or 2 or 4 or 8 or 16 or 32 or 64 or 128;
Inc(PRGB,3);
end;
end;
p^:=1 or 2 or 4 or 8 or 16 or 32 or 64 or 128;
这行代码什么意思呢?1=1(二进制),2=10(二进制),4=100(二进制),8=1000(二进制)...
结合上篇中解释了的或运算,很容易理解就以八个字位为单位,给其赋上颜色信息!
pf4bit:
和pf1bit位图一样,操作pf4bit位图也需要用位操作.
pf8bit:
可直接利用Byte、TByteArray,但用Scanline取的值表示的只是调色板上颜色的索引.
pf15bit和pf16bit:
这两种位图都是16位的,pf15bit是第一位为0,后15位的每5位分别表示红、绿、蓝.而pf16bit中绿色占6位,其它两种颜色占用5位(人眼对绿色比较敏感)!
pf24bit位图转pf15bit位图代码
var
Row24:pRGBTriple;
Row15:PWord;
for j := 0 TO Bitmap.Height-1 DO
begin
Row15 := Bitmap15.Scanline[j];
Row24 := Bitmap24.Scanline[j];
for i := 0 TO Bitmap.Width-1 DO
begin
with Row24^ do
Row15^ := (rgbtRed Shr 3) Shl 10 or (rgbtGreen Shr 3) Shl 5 or (rgbtBlue Shr 3);
Inc(Row24);
Inc(Row15);
end
end;
pf24bit和pf32bit:
pf24bit上面的已多次用到,就不多说了.而pf32bit和pf24bit一样,用24位(前24位)来记录三原色的颜色信息!
PRGBQuad = ^TRGBQuad;
tagRGBQUAD = packed record
rgbBlue: Byte;
rgbGreen: Byte;
rgbRed: Byte;
rgbReserved: Byte;
end;
TRGBQuad = tagRGBQUAD;
如果要修改上面的程序,就是简单的PRGBQuad替换PRGBTriple,TRGBQuad替换TRGBTriple的过程~
测试表明在pf32bit中利用Scanline处理图像要比pf24bit快.
所以除了单色图(PixelFormats=pf1bit)外(没必要),其它都可转外32位色实现灰度化.这也是一种比较可行的方法!
[优化篇]
还以上篇中给出的灰度化代码为例
procedure Grayscale(const Bitmap:TBitmap);
var
X: Integer;
Y: Integer;
PRGB: pRGBTriple;
Gray: Byte;
begin
for Y := 0 to (Bitmap.Height - 1) do
begin
PRGB := Bitmap.ScanLine[Y];
for X := 0 to (Bitmap.Width - 1) do
begin
Gray := Trunc(0.3 * PRGB^.rgbtRed + 0.59 * PRGB^.rgbtGreen + 0.11 * PRGB^.rgbtBlue);
PRGB^.rgbtRed:=Gray;
PRGB^.rgbtGreen:=Gray;
PRGB^.rgbtBlue:=Gray;
Inc(PRGB);
end;
end;
end;
实际应用中,这种方法已经很快了,但实际上还存在可以优化的余地,什么呢?
Gray := Trunc(0.3 * Red + 0.59 * Green + 0.11 * Blue);//这句用的是浮点运算
在图像处理中,速度就是生命,能不用浮点运算,就最好不要用!
Gray := (30 * Red + 59 * Green + 11 * Blue) div 100;
虽然这样一改,运算次数多了一次,但在我的雷鸟1.1G上,处理速度大概能提高5%左右!而同主频下(或略低,如Athlon 1600+相当于P4 1.6G)AMD的CPU浮点运算能力比Intel的较强,整数运算能力较弱,所以用Intel的CPU在这里更能体现出优势!
注:x div 100 和 Trunc(x/100)的效果是相同的,但查看其汇编代码可知一个用的指令是div,而另一个是fdiv(即进行浮点运算),还要调用函数Trunc,其处理速度差距非常大,所以能用 x div 100 的时候就不要用 Trunc(x/100).
但这还不是最快的,再看一个:
Gray := HiByte(77 * Red + 151 * Green + 28 * Blue);
即
Gray := (77 * Red + 151 * Green + 28 * Blue) shr 8;
(建议用后一种,不要调用函数)
这种方法比最原始的方法快了近3/4!
什么意思呢?用77,151,28分别除以256试试~~~
移位是什么意思呢,和10进制的进位,退位联系一下,是不是可以近似的理解为乘除2的n次方呢?当然这和真正意义的乘除法是不一样的!比如shr(右移),和真正的除法相比,比如shr 1,只有最后一个字位为0时(既为2的倍数),它才等于除2!如二进制数110(6)右移1位变为11(3),和6/2=3结果相同.
当然这和一开始的灰度化效果有了些误差!
如果允许存在更大的误差,还可以考虑另一种方法:
Gray := (Red shr 2) + (Red shr 4) + (Green shr 1) + (Green shr 4) + (Blue shr 3);
连乘法都没用,完全用移位实现,结合上面的解释,用除法来理解该表达式,其值只是约等于(0.3125 * Red + 0.5625 * Green + 0.125 * Blue),和一开始的加权平均值有了比较大的误差!但如果对速度有苛刻的要求的话,可以怎么用!这比上一种方法还能再快5%!
基础篇]
首先看一段实现24位色图像灰度化转换的代码
procedure Grayscale(const Bitmap:TBitmap);
var
X: Integer;
Y: Integer;
R,G,B,Gray: Byte;
Color: TColor;
begin
for Y := 0 to (Bitmap.Height - 1) do
begin
for X := 0 to (Bitmap.Width - 1) do
begin
Color := Bitmap.Canvas.Pixels[X,Y];
R := Color and $FF;
G := (Color and $FF00) shr 8;
B := (Color and $FF0000) shr 16;
Gray := Trunc(0.3 * R + 0.59 * G + 0.11 * B);
Bitmap.Canvas.Pixels[X,Y] := Gray shl 16 or Gray shl 8 or Gray;
end
end
end;
{这段代码效率是非常低的,但可以方便我们理解同时一些问题}
Delphi的帮助中对TColor已经有了详细的描述,这可以方便我们理解上面的代码!
首先看:
R := Color and $FF;
G := (Color and $FF00) shr 8;
B := (Color and $FF0000) shr 16;
这是段常见的从TColor中提取三原色的代码,但它是什么意思呢?
首先应该知道and是与(.)运算,0.1=0,0.0=0,1.1=1,以取绿色为例:$FF00实际上就是$00FF00,它与一个TColor类型数按位进行与运算后,表示红色和绿色的位都变为了$00,而表示绿色的部分不变(0,1和1进行与运算值都不变),再右移8位,自然就获得了绿色值的8位表示!
再获得三原色的值后,就是计算灰度值,0.3 * Red + 0.59 * Green + 0.11 * Blue 这是求加权平均值的公式.(因为人眼对颜色的敏感度不同,所以权值不同,就像在pf16bit中用了6位表示绿色,其它两种颜色只用了5位,这问题以后另写文章说明)
然后就是像素颜色信息的写回,刚才是右移,现在自然就是左移,而或(+)运算就是(0+1=1,0+0=0,1+1=1),举个简单例子就是:($FF shl 16 = $FF0000) or ($FF shl 8 = $FF00) or $FF = $FFFFFF ,其实这里的或运算当然也可以用 + 代替.
虽然上面的代码实现了24位色图像的灰度化,但当图像比较大时,速度非常慢,为什么?查看相关VCL代码可知调用Bitmap.Canvas.Pixels获取,写入像素的颜色信息实际上是利用了API GetPixel、SetPixel,这种方法是非常低效的!(唯一的好处是在进行一些和颜色无关的操作,如图像的旋转,翻转时不需要因为PixelFormat的不同而修改代码)所以应该换一种更高效的访问像素点数据的方法,如用API GetDIBits、SetDIBits,但这种方法比较复杂,好在Delphi3以后版本的TBitmap中提供了Scanline.利用Scanline可以快速对像素进行访问!
还是以24位色(PixelFormats=pf24bit)为例,可改写为:
procedure Grayscale(const Bitmap:TBitmap);
const
PixelCountMax = 32768;
type
pRGBTripleArray = ^TRGBTripleArray;
TRGBTripleArray = ARRAY[0..PixelCountMax-1] OF TRGBTriple;
var
Row: pRGBTripleArray;
X: Integer;
Y: Integer;
Gray: Byte;
begin
for Y := 0 to (Bitmap.Height - 1) do
begin
Row := Bitmap.ScanLine[Y];
for X := 0 to (Bitmap.Width - 1) do
begin
Gray := Trunc(0.3 * Row^[X].rgbtRed + 0.59 * Row^[X].rgbtGreen + 0.11 * Row^[X].rgbtBlue);
Row^[X].rgbtRed:=Gray;
Row^[X].rgbtGreen:=Gray;
Row^[X].rgbtBlue:=Gray;
end;
end;
end;
上面的例子用了一个TRGBTriple数组
PRGBTriple = ^TRGBTriple;
tagRGBTRIPLE = packed record
rgbtBlue: Byte;
rgbtGreen: Byte;
rgbtRed: Byte;
end;
TRGBTriple = tagRGBTRIPLE;
这种方法会限制位图的大小,但一般不用理会,直接用TBitmap可处理不了那么大的位图
当然也可用指针的移动实现,实测结果这样更快~~~
procedure Grayscale(const Bitmap:TBitmap);
var
X: Integer;
Y: Integer;
PRGB: pRGBTriple;
Gray: Byte;
begin
for Y := 0 to (Bitmap.Height - 1) do
begin
PRGB := Bitmap.ScanLine[Y];
for X := 0 to (Bitmap.Width - 1) do
begin
Gray := Trunc(0.3 * PRGB^.rgbtRed + 0.59 * PRGB^.rgbtGreen + 0.11 * PRGB^.rgbtBlue);
PRGB^.rgbtRed:=Gray;
PRGB^.rgbtGreen:=Gray;
PRGB^.rgbtBlue:=Gray;
Inc(PRGB);
end;
end;
end;
[颜色篇]
在上面提到了,那灰度化代码只能适用于24位色(PixelFormats=pf24bit),为什么?看看记录类型tagRGBTRIPLE,正好24位,所以这样只能处理24位色图!
那怎么处理其他的位图呢?
先对这各种类型的位图做些简单的介绍~~~
pf1bit:
每个像素只需要用一位表示,如调色板定义的是黑白两种颜色(0为黑,1为白),这时只能用位操作访问像素信息!如定义
var P:PByte
for Y := 0 to (Bitmap.Height - 1) do
begin
p := Bitmap.ScanLine[Y];
for X := 0 to (Bitmap.width - 1) DIV 8 + 1 do
begin
p^:=1 or 2 or 4 or 8 or 16 or 32 or 64 or 128;
Inc(PRGB,3);
end;
end;
p^:=1 or 2 or 4 or 8 or 16 or 32 or 64 or 128;
这行代码什么意思呢?1=1(二进制),2=10(二进制),4=100(二进制),8=1000(二进制)...
结合上篇中解释了的或运算,很容易理解就以八个字位为单位,给其赋上颜色信息!
pf4bit:
和pf1bit位图一样,操作pf4bit位图也需要用位操作.
pf8bit:
可直接利用Byte、TByteArray,但用Scanline取的值表示的只是调色板上颜色的索引.
pf15bit和pf16bit:
这两种位图都是16位的,pf15bit是第一位为0,后15位的每5位分别表示红、绿、蓝.而pf16bit中绿色占6位,其它两种颜色占用5位(人眼对绿色比较敏感)!
pf24bit位图转pf15bit位图代码
var
Row24:pRGBTriple;
Row15:PWord;
for j := 0 TO Bitmap.Height-1 DO
begin
Row15 := Bitmap15.Scanline[j];
Row24 := Bitmap24.Scanline[j];
for i := 0 TO Bitmap.Width-1 DO
begin
with Row24^ do
Row15^ := (rgbtRed Shr 3) Shl 10 or (rgbtGreen Shr 3) Shl 5 or (rgbtBlue Shr 3);
Inc(Row24);
Inc(Row15);
end
end;
pf24bit和pf32bit:
pf24bit上面的已多次用到,就不多说了.而pf32bit和pf24bit一样,用24位(前24位)来记录三原色的颜色信息!
PRGBQuad = ^TRGBQuad;
tagRGBQUAD = packed record
rgbBlue: Byte;
rgbGreen: Byte;
rgbRed: Byte;
rgbReserved: Byte;
end;
TRGBQuad = tagRGBQUAD;
如果要修改上面的程序,就是简单的PRGBQuad替换PRGBTriple,TRGBQuad替换TRGBTriple的过程~
测试表明在pf32bit中利用Scanline处理图像要比pf24bit快.
所以除了单色图(PixelFormats=pf1bit)外(没必要),其它都可转外32位色实现灰度化.这也是一种比较可行的方法!
[优化篇]
还以上篇中给出的灰度化代码为例
procedure Grayscale(const Bitmap:TBitmap);
var
X: Integer;
Y: Integer;
PRGB: pRGBTriple;
Gray: Byte;
begin
for Y := 0 to (Bitmap.Height - 1) do
begin
PRGB := Bitmap.ScanLine[Y];
for X := 0 to (Bitmap.Width - 1) do
begin
Gray := Trunc(0.3 * PRGB^.rgbtRed + 0.59 * PRGB^.rgbtGreen + 0.11 * PRGB^.rgbtBlue);
PRGB^.rgbtRed:=Gray;
PRGB^.rgbtGreen:=Gray;
PRGB^.rgbtBlue:=Gray;
Inc(PRGB);
end;
end;
end;
实际应用中,这种方法已经很快了,但实际上还存在可以优化的余地,什么呢?
Gray := Trunc(0.3 * Red + 0.59 * Green + 0.11 * Blue);//这句用的是浮点运算
在图像处理中,速度就是生命,能不用浮点运算,就最好不要用!
Gray := (30 * Red + 59 * Green + 11 * Blue) div 100;
虽然这样一改,运算次数多了一次,但在我的雷鸟1.1G上,处理速度大概能提高5%左右!而同主频下(或略低,如Athlon 1600+相当于P4 1.6G)AMD的CPU浮点运算能力比Intel的较强,整数运算能力较弱,所以用Intel的CPU在这里更能体现出优势!
注:x div 100 和 Trunc(x/100)的效果是相同的,但查看其汇编代码可知一个用的指令是div,而另一个是fdiv(即进行浮点运算),还要调用函数Trunc,其处理速度差距非常大,所以能用 x div 100 的时候就不要用 Trunc(x/100).
但这还不是最快的,再看一个:
Gray := HiByte(77 * Red + 151 * Green + 28 * Blue);
即
Gray := (77 * Red + 151 * Green + 28 * Blue) shr 8;
(建议用后一种,不要调用函数)
这种方法比最原始的方法快了近3/4!
什么意思呢?用77,151,28分别除以256试试~~~
移位是什么意思呢,和10进制的进位,退位联系一下,是不是可以近似的理解为乘除2的n次方呢?当然这和真正意义的乘除法是不一样的!比如shr(右移),和真正的除法相比,比如shr 1,只有最后一个字位为0时(既为2的倍数),它才等于除2!如二进制数110(6)右移1位变为11(3),和6/2=3结果相同.
当然这和一开始的灰度化效果有了些误差!
如果允许存在更大的误差,还可以考虑另一种方法:
Gray := (Red shr 2) + (Red shr 4) + (Green shr 1) + (Green shr 4) + (Blue shr 3);
连乘法都没用,完全用移位实现,结合上面的解释,用除法来理解该表达式,其值只是约等于(0.3125 * Red + 0.5625 * Green + 0.125 * Blue),和一开始的加权平均值有了比较大的误差!但如果对速度有苛刻的要求的话,可以怎么用!这比上一种方法还能再快5%!
怎样把图像灰度化
怎样理解图像的灰度平均值和图像的灰度平均方差?
PS中,画笔50度灰度,是把图像模式调整为灰度吗?
彩色图像的色彩强度和把彩色图像转换为灰度图像之后的灰度有没有区别?
怎么用Matlab把一副灰度图像分成一副灰度高的和一副灰度低的图像?求全部程序..
请教matlab高手:怎样把8bit的图像中每一点的灰度值和坐标显示出来呢?我想得到每个点的具体坐标和其所对应灰度值.每
图像灰度级量化求助请问怎么把灰度级为256的图像量化成8或者16灰度级的图像呢?因为要计算一些东西,计算量跟灰度级的平方
图像灰度化的目的是什么?解释的清楚点,
matlab如何用循环语句把灰度图像转化为二值图像
把24位彩色图像转换成8位的灰度图像的算法?
什么是8-bpp灰度图像?
matlab怎么生成灰度图像