已知函数y=f(x)的定义域为R,且当x属于R时,f(m+x)=f(m-x)恒成立,求证:y=f(x)的图像关于直线x=
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 08:22:34
已知函数y=f(x)的定义域为R,且当x属于R时,f(m+x)=f(m-x)恒成立,求证:y=f(x)的图像关于直线x=m对称
(1)f(m+x)=f(m-x),令m+x=t,
则上式可化为:f(t)=f(2m-t)
在函数y=f(x)的图像上任取一点(a,b),则b=f(a),
又因f(a)=f(2m-a),所以b= f(2m-a)
点(a,b)关于直线x=m的对称点是(2m-a,b).
这说明对称点(2m-a,b)也在函数y=f(x)的图像上,
所以y=f(x)图像关于直线x=m对称.
(2)由(1)知:图像的对称轴是x=2,则有f(2+x)=f(2-x),
令x=2得:f(4)=f(0)
log2|4a-1|= log2|0-1|
|4a-1|=1,又a不为0,
所以4a-1=1,a=1/2.
再问: 您怎么知道第(2)问??⊙﹏⊙
再问: 好厉害的解答!!(+﹏+)~
则上式可化为:f(t)=f(2m-t)
在函数y=f(x)的图像上任取一点(a,b),则b=f(a),
又因f(a)=f(2m-a),所以b= f(2m-a)
点(a,b)关于直线x=m的对称点是(2m-a,b).
这说明对称点(2m-a,b)也在函数y=f(x)的图像上,
所以y=f(x)图像关于直线x=m对称.
(2)由(1)知:图像的对称轴是x=2,则有f(2+x)=f(2-x),
令x=2得:f(4)=f(0)
log2|4a-1|= log2|0-1|
|4a-1|=1,又a不为0,
所以4a-1=1,a=1/2.
再问: 您怎么知道第(2)问??⊙﹏⊙
再问: 好厉害的解答!!(+﹏+)~
已知函数y=f(x)的定义域为R,且当x属于R时,f(m+x)=f(m-x)恒成立,求证:y=f(x)的图像关于直线x=
已知函数y=f(x)的定义域为R,且当X∈R时,f(m+x)=f(m-x)恒成立,求证Y=F(X)的图像关于直线x=m对
(1)已知函数y=f(x)的定义域为R,且当X属于R时,f(m+x)=f(m-x),恒成立,求证:Y=f(x)的图像关于
已知函数y=f(x)(x∈R)且f(m+x)=f(m-x)恒成立,求证:y=f(x)的图像关于直线x+m对称
已知f(x)的定义域为R 且当其定义域为R时f(m+x)=f(m-x)恒成立若函数y=log2(|ax-1|)的图像的对
(1)已知函数y=f(x)的定义域为R,且当x∈R时,f(m+x)=f(m-x)恒成立,求证y=f(x)的图象关于直线x
已知函数y=f(x)的定义域为R,当x1,且对任意的实数x,y(x,y属于R),等式f(x)*f(y)=f(x+y)成立
已知函数y=f(x)的定义域为R,当x1,且对任意的实数x,y属于R,等式f(x)f(y)=f(x+y)恒成立,
函数 恒成立已知定义域为R的函数y=f(X)满足f(x)+f(2-X)=2f(1),当x≥1时,f(X)=X+4/X,且
已知函数y=f(x) 的定义域为R,当x1 ,且对任意的实数x,y属于 R,等式f(x)f(y)=f(x+y) 成立.
已知定义域为R的函数y=f(x),则下列命题:1、若f(x+1)=f(1-x)恒成立,则函数 y=f(x)的图像关于直线
设函数y=f(x)定义域为R,当x>0时f(x)>1,且对于任意的x,y∈R有f(x+y)=f(x)·f(y)成立