设函数y=f(x)(x∈R,且x≠0)对任意非零实数x1,x2,满足f(x1)+f(x2)=f(x1x2)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 09:11:21
设函数y=f(x)(x∈R,且x≠0)对任意非零实数x1,x2,满足f(x1)+f(x2)=f(x1x2)
1.求f(1)+f(—1)的值
2.判断函数y=f(x)的奇偶性.
1.求f(1)+f(—1)的值
2.判断函数y=f(x)的奇偶性.
1.f(x1)+f(x2)=f(x1x2),即f(x1x2)=f(x1)+f(x2),
令x1=x2=1,代入得f(1*1)=f(1)+f(1),所以f(1)=0;
令x1=x2=-1,代入得f(1)=f[(-1)*(-1)]=f(-1)+f(-1)=2f(-1)=0,所以f(-1)=0;
2.令x1=-1,代入得f(-x2)=f(-1)+f(x2)=0+f(x2)=f(x2),所以f(x)是偶函数.
令x1=x2=1,代入得f(1*1)=f(1)+f(1),所以f(1)=0;
令x1=x2=-1,代入得f(1)=f[(-1)*(-1)]=f(-1)+f(-1)=2f(-1)=0,所以f(-1)=0;
2.令x1=-1,代入得f(-x2)=f(-1)+f(x2)=0+f(x2)=f(x2),所以f(x)是偶函数.
设函数y=f(x)(x∈R,且x≠0)对任意非零实数x1,x2,满足f(x1)+f(x2)=f(x1x2)
设函数y=f(x)(x属于R,且x不等于0),对任意非零实数x1,x2.满足f(x1)+f(x2)=f(x1x2)
设函数y=f(x)对任意非零实数x1,x2满足f(x1x2)=f(x1)+f(x2)
已知函数y=f (x)(x∈R,x≠0)对任意的非零实数x1,x2,恒有f(x1x2)=f(x1)+f(x2),试判断f
已知函数y=f (x)(x∈R,x≠0)对任意的非零实数x1,x2,恒有f(x1x2)=f(x1)+f(x2)
已知函数f(x)(x∈R,x≠0)对任意的非零实数x1,x2,恒有f(x1x2)=f(x1)+f(x2),且当X>1,f
设y=f(x)(x∈R)对任意实数x1x2,满足f(x1)+f(x2)=f(x1*x2)求证f(1)=f(-1)=0和f
设函数y=f(x)(x∈R且x≠0)对定义域内任意的x1x2恒有f(x1 * x2)=f(x1)+f(x2)
设y=f(x)(x∈R且x≠0)时任意非0 x1和x2有f(x1x2)=f(x1)+f(x2)求证:
定义在R上的函数f(x) (f(x)≠0)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)f(x2),且x>
设函数f(x)定义域(0,+∞),且f(4)=1,对任意正实数x1x2,有f(x1x2)=f(x1)+f(x2),且当x
已知函数y=f(x)(x属于R,且x不等于零) 对任意非零实数x1,x2,恒有f(x1乘以x2) =f(x1)+f(x2