如图:(1)P是等腰三角形ABC底边BC上的一个动点,过点P作BC的垂线,交AB于点Q,交CA的延长线于点R.请观察AR
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 16:42:15
如图:
(1)P是等腰三角形ABC底边BC上的一个动点,过点P作BC的垂线,交AB于点Q,交CA的延长线于点R.请观察AR与AQ,它们有何关系?并证明你的猜想.
(2)如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB的延长线上时,(1)中所得的结论还成立吗?请你在图(2)中完成图形,并给予证明.
(1)P是等腰三角形ABC底边BC上的一个动点,过点P作BC的垂线,交AB于点Q,交CA的延长线于点R.请观察AR与AQ,它们有何关系?并证明你的猜想.
(2)如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB的延长线上时,(1)中所得的结论还成立吗?请你在图(2)中完成图形,并给予证明.
(1)AR=AQ,理由如下:
∵AB=AC,
∴∠B=∠C.
∵RP⊥BC,
∴∠B+∠BQP=∠C+∠PRC=90°,
∴∠BQP=∠PRC.
∵∠BQP=∠AQR,
∴∠PRC=∠AQR,
∴AR=AQ;
(2)猜想仍然成立.证明如下:
∵AB=AC,
∴∠ABC=∠C.
∵∠ABC=∠PBQ,
∴∠PBQ=∠C,
∵RP⊥BC,
∴∠PBQ+∠BQP=∠C+∠PRC=90°,
∴∠BQP=∠PRC,
∴AR=AQ.
∵AB=AC,
∴∠B=∠C.
∵RP⊥BC,
∴∠B+∠BQP=∠C+∠PRC=90°,
∴∠BQP=∠PRC.
∵∠BQP=∠AQR,
∴∠PRC=∠AQR,
∴AR=AQ;
(2)猜想仍然成立.证明如下:
∵AB=AC,
∴∠ABC=∠C.
∵∠ABC=∠PBQ,
∴∠PBQ=∠C,
∵RP⊥BC,
∴∠PBQ+∠BQP=∠C+∠PRC=90°,
∴∠BQP=∠PRC,
∴AR=AQ.
如图:(1)P是等腰三角形ABC底边BC上的一个动点,过点P作BC的垂线,交AB于点Q,交CA的延长线于点R.请观察AR
P是等腰三角形ABC的底边BC上的一点,过点P作BC的垂线,交AB于点Q,交CA的延长线与R
P是等腰三角形ABC的底边BC上的一点,过点P作BC的垂线,交AB于点Q,交CA的延长线与R,则说明AR与AQ相等
点p是等腰三角形abc的底边bc上的一点,过点p作BC的垂线,交AB于点Q,交CA的延长线于点R,则
如图,P是等腰三角形ABC的底边BC上一点.过点P坐BC的垂线,交与AB与点Q,交CA的延长线与点R则AR与AQ相等吗
如图,设点P是边长为a的正三角形ABC的边BC上一点,过点P作PQ⊥AB,垂足为Q,延长QP交AC的延长线于点R.当点P
(1)如图,在△ABC中,AB=AC,D是底边BC上的一点,过点D作BC的垂线,交AB于点E,交AC的延长线于F,则△A
1.已知:如图,在三角形ABC中,点M式BC的中点,点Q是AB的中点,过Q作AM的平行线,交BC于点P,交CA的延长线于
如图,已知AD为△ABC的BC边上的中线,P为线段BD上一点,过点P作AD的平行线交AB于点Q,交CD的延长线于点R.
如图,△ABC中,AB=AC,D是底边BC上的一个动点,过点D作BC的垂线分别交一腰和另一腰的延长线于点E、F.过点A作
AM是△ABC中BC边长的中线,P为BC上任意一点,过点P作AM的平行线,分别交BA、CA(或其延长线)于点Q、R.求
如图,P是等腰三角形ABC的底边BC上的一点,过P做AB、AC的平行线交AC、AB于点Q、R.证明:PQ+PR为定值