作业帮 > 数学 > 作业

已知如图,等腰△ABC内接于⊙O,∠B=∠ACB=30°,弦AD交BC于E,AE=2,ED=4,则⊙O的半径为 ___

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 20:07:33
已知如图,等腰△ABC内接于⊙O,∠B=∠ACB=30°,弦AD交BC于E,AE=2,ED=4,则⊙O的半径为 ___ .
已知如图,等腰△ABC内接于⊙O,∠B=∠ACB=30°,弦AD交BC于E,AE=2,ED=4,则⊙O的半径为 ___
连接OA,OC,AO交BC于点F,则OA=OC,∠B=∠C,
∴AB=AC,
由圆周角定理知,∠O=2∠D=60°,
所以等腰△OAC是等边三角形,
有AB=AC=OA,
∵∠B=∠C,
∴AE⊥BC
∵AB=AC,AE=AE,
∴Rt△ABE≌Rt△ACE,
∴BE=CE,∠AEB=∠AEC,
∵∠AEB+∠AEC=180°,
∴∠AEB=∠AEC=90°,
∴BF2=AB2-AF2,AF2+EF2=AE2
由相交弦定理知,BE•CE=AE•ED=8,
而BE•CE=(BF+EF)(BF-EF)=BF2-EF2=AB2-AF2-EF2=AB2-AE2=AB2-4=8,
∴AB2=12,
∴半径等于2
3.