P为平面M外一点,PO垂直于平面M于O,PA,PB为平面M的斜线,若PA=8,PB=5,OA:OB=4:根号3
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 07:13:18
P为平面M外一点,PO垂直于平面M于O,PA,PB为平面M的斜线,若PA=8,PB=5,OA:OB=4:根号3
求:1.求OP的长
2.若角AOB=90°,求角APB的大小
求:1.求OP的长
2.若角AOB=90°,求角APB的大小
1、因为OA:OB=4:根号3
所以可以设OA=4m,OB=(根号3)m,PO=x
又由题意知道△POA与△POB为直角三角形
所以有 X²+(4m)²=8².①
X²+[(根号3)m]²=5².②
联立①②有m²=3,有X²=16
则X=4或者X=-4(舍去)
所以op的长为4
2、因为∠AOB=90°
所以三角形为直角三角形
由题1有m²=3,则m=根号3
OA=4(根号3)
OB=3
所以AB²=OA²+OB²=48+9=57
由余弦定理有cos∠APB=[(AP)²+(BP)²-(AB)²]/[2(AP)*(BP)]=(64+25-57)/(2*8*5)=32/80=2/5
故而∠APB=arccos(2/5)
所以可以设OA=4m,OB=(根号3)m,PO=x
又由题意知道△POA与△POB为直角三角形
所以有 X²+(4m)²=8².①
X²+[(根号3)m]²=5².②
联立①②有m²=3,有X²=16
则X=4或者X=-4(舍去)
所以op的长为4
2、因为∠AOB=90°
所以三角形为直角三角形
由题1有m²=3,则m=根号3
OA=4(根号3)
OB=3
所以AB²=OA²+OB²=48+9=57
由余弦定理有cos∠APB=[(AP)²+(BP)²-(AB)²]/[2(AP)*(BP)]=(64+25-57)/(2*8*5)=32/80=2/5
故而∠APB=arccos(2/5)
P为平面M外一点,PO垂直于平面M于O,PA,PB为平面M的斜线,若PA=8,PB=5,OA:OB=4:根号3
从平面a外一点P分别引平面a的垂线PO和斜线PA,PB,若PA=8,PB=5,且OA:OB=4:√3,则点P到平面a的距
在三棱锥P—ABC中,PA=PB=PA,O为外心,求证:PO垂直于平面ABC
点P为三角形ABC所在平面外一点,PO垂直于面ABC.(1)若PA=PB=PC,则O为三角形的——心.(2)若PA垂直于
在三角形ABC所在平面外一点P,PA=PB,BC垂直平面PAB,M为PB中点,N为AB上的一点
直线与平面垂直在三角形ABC所在的平面外有一点P,PA=PB,BC垂直于平面PAB,M为PC的中点,N为AB上的一点,且
O是三角形ABC的外心,P是三角形ABC所在平面外一点且PA=PB=PC.求证PO垂直于平面ABC
p是三角形abc所在平面外一点,pa=pb,bc垂直于平面pab,M为PC的中点,N是AB上一点,且AN=3BN,求证:
在三角形ABC所在的平面外有一点P,PA=PB,BC垂直于平面PAB,M为PC的中点,且AN=3BN,求证:AB垂直于M
已知P为在三角形ABC所在平面a外一点,PA=PB=PC,且两两垂直,又PO垂直于a
在圆O的平面上取一点P作圆O的割线,交圆O于A、B,已知PA=2,PB=3,PO=4,则圆O的半径为
过三角形ABC所在平面a外一点P,做PO垂直a,垂足为O,连接PA,PB,PC,若PA=PB=PC,则点O是三角形ABC