已知F(X)在区间[a,b]上连续,在(a,b)可导,求证:在(a,b)内至少存在一点t,使得[bF(b)-aF(a)]
已知F(X)在区间[a,b]上连续,在(a,b)可导,求证:在(a,b)内至少存在一点t,使得[bF(b)-aF(a)]
已知函数f(x)在[a,b]上连续(a,b)上可导,证明(a,b)内至少存在m,n,使得f(m)-mf'(m)=[bf(
f(x)在(a,b)内连续且可导 ,且f(a)=f(b)=0,证明在区间(a,b)至少存在一点r,使得f'(r)=f(r
中值定理与等式证明设函数f(x)在[a,b]上连续,在(a,b)内可导,证明:至少存在一点x,使 [bf(b)-af(a
证明:设f(x)在[a,b]上连续,在(a,b)内可导,则(a,b)内至少存在一点c,使f(c)+cf'(c)=[bf(
函数f(x)在[a,b]上连续,(a,b)内可导.证明存在一点&属于(a,b)使(bf(b)-af(a))/(b-a)=
设f(x)在闭区间[a,b]上连续,x1,x2,...,xn是区间[a,b]上的点,求证在区间[a,b]上至少存在一点t
证明:若函数f(x)和g(x)在区间[a,b]上连续,则至少存在一点ξ∈[a,b],使得:
若函数f(x)在[a,b]上连续,在(a,b)内可导,则在(a,b)内至少存在一点t
证明 若f(x)在有限区间内一致连续,则可补充f(a)和f(b),使得f(x)在[a,b]上连续
微积分 证明题设函数g(x)在[a,b]上连续,在(a,b)上可导,证明:(a,b)内至少存在一点c,使得g'(c)=[
设f(X)在[a,b]上连续,且f(a)小于a,f(b)大于b,证明在区间(a,b)内至少存在一点m,使f(m)=m