已知,如图1,将平行四边形ABCD折叠,使点A与点C重合,折痕为EF,点E在边AD上,点F在边BC上,连接CE,AF,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 00:19:20
已知,如图1,将平行四边形ABCD折叠,使点A与点C重合,折痕为EF,点E在边AD上,点F在边BC上,连接CE,AF,
(1)判断该四边形AFCE的形状,并说明理由:
(2)若角B=90°,AB=3,BC=4,求DE的长
(1)判断该四边形AFCE的形状,并说明理由:
(2)若角B=90°,AB=3,BC=4,求DE的长
(1) 为平行四边行.
因将平行四边形ABCD折叠,使点A与点C重合,折痕为EF,点E在边AD上,点F在边BC上,连接CE,AF.
则折痕EF为四边形AFCE的对角线,AE与CE重叠,AF与CF重叠,即AE=CE,AF=CF.
连接AC,则三角形AEC与三角形AFC均为等腰三角形.
即∠EAC=∠ECA,∠FAC=∠FCA.
而平行四边形ABCD中,∠CAE=∠ACF
即∠EAC=∠ECA=角FAC=∠FCA.
则∠FAE=∠ECF
而四边行AE平行于CF,又∠FAE=∠ECF.
即证得四边行AFCE为平行四边形.
(2)若∠B=90°,AB=3,BC=4,则AC=5.
因∠B=90°,所以∠D=90°.
AD=BC=4,CD=AB=3.
设DE为X,CE为Y.因为CE=AE.
所以X+Y=DE+AE=4
CD的平方+DE的平方=CE的平方,即3的平方+X的平方=Y的平方.
可算出X=DE=7/8
因将平行四边形ABCD折叠,使点A与点C重合,折痕为EF,点E在边AD上,点F在边BC上,连接CE,AF.
则折痕EF为四边形AFCE的对角线,AE与CE重叠,AF与CF重叠,即AE=CE,AF=CF.
连接AC,则三角形AEC与三角形AFC均为等腰三角形.
即∠EAC=∠ECA,∠FAC=∠FCA.
而平行四边形ABCD中,∠CAE=∠ACF
即∠EAC=∠ECA=角FAC=∠FCA.
则∠FAE=∠ECF
而四边行AE平行于CF,又∠FAE=∠ECF.
即证得四边行AFCE为平行四边形.
(2)若∠B=90°,AB=3,BC=4,则AC=5.
因∠B=90°,所以∠D=90°.
AD=BC=4,CD=AB=3.
设DE为X,CE为Y.因为CE=AE.
所以X+Y=DE+AE=4
CD的平方+DE的平方=CE的平方,即3的平方+X的平方=Y的平方.
可算出X=DE=7/8
已知,如图1,将平行四边形ABCD折叠,使点A与点C重合,折痕为EF,点E在边AD上,点F在边BC上,连接CE,AF,
如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E、交BC于点F,连接AF、CE.
已知,矩形ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,折痕EF交AD边于E,交BC边于F,分别连接AF和C
如图,在矩形ABCD中,AB=3,AD=5,点P在线段BC上运动,现将纸片折叠,使点A与点P重合,得折痕EF(点E、F为
如图 在矩形ABCD中,AB=6,BC=8,将矩形折叠,使点C与点A重合,折痕为EF,再展开,连接AF、CE、AC,AC
在矩形ABCD中(AD>CD),将纸片折叠一次,使点A与C重合,再展开,折痕EF交AD于E,交BC于F,分别连接AF和C
如图 将边长为1的正方形ABCD折叠,使点A落在边CD上的点M处,折痕EF分别交AD、BC于点E、F,边AB折叠后交边B
如图,将边长为1的正方形ABCD折叠,使点A落在边CD上,的点M处,折痕EF分别交AD,BC于点E,F.边AB折叠后交
如图,已知矩形ABCD,AB=3cm,BC=4cm,点E在边AD上,将矩形折起,使点C与点E重合,折痕为FG,FG分别交
如图,在平行四边形ABCD中,AC为对角线EF⊥AC于点O,交AD于点E,交BC于点F,连接AF,CE
如图 abcd为正方形 e为bc上一点 将正方形折叠 使a点与e点重合,折痕为mn,若tan角ae
如图,平行四边形ABCD中,点E在边CD上,以BE为折痕,将三角形BCE向上翻折,点C正落在AD上的点F,连接FC,