asinx+bcosx=?
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 22:49:25
asinx+bcosx=?
辅助角公式
对于acosx+bsinx型函数,我们可以如此变形acosx+bsinx=√(a^2+b^2)(acosx/√(a^2+b^2)+bsinx/√(a^2+b^2)),令点(b,a)为某一角φ终边上的点,则sinφ=a/√(a^2+b^2),cosφ=b/√(a^2+b^2) ∴acosx+bsinx=√(a^2+b^2)sin(x+arctan(b/a)) 这就是辅助角公式. 设要证明的公式为acosA+bsinA=√(a^2+b^2)sin(A+M) (tanM=a/b)
设acosA+bsinA=xsin(A+M) ∴acosA+bsinA=x((a/x)cosA+(b/x)sinA) 由题,(a/x)^2+(b/x)^2=1,sinM=a/x,cosM=b/x ∴x=√(a^2+b^2) ∴acosA+bsinA=√(a^2+b^2)sin(A+M) ,tanM=sinM/cosM=a/
再问: tanM为什么等于b/a
对于acosx+bsinx型函数,我们可以如此变形acosx+bsinx=√(a^2+b^2)(acosx/√(a^2+b^2)+bsinx/√(a^2+b^2)),令点(b,a)为某一角φ终边上的点,则sinφ=a/√(a^2+b^2),cosφ=b/√(a^2+b^2) ∴acosx+bsinx=√(a^2+b^2)sin(x+arctan(b/a)) 这就是辅助角公式. 设要证明的公式为acosA+bsinA=√(a^2+b^2)sin(A+M) (tanM=a/b)
设acosA+bsinA=xsin(A+M) ∴acosA+bsinA=x((a/x)cosA+(b/x)sinA) 由题,(a/x)^2+(b/x)^2=1,sinM=a/x,cosM=b/x ∴x=√(a^2+b^2) ∴acosA+bsinA=√(a^2+b^2)sin(A+M) ,tanM=sinM/cosM=a/
再问: tanM为什么等于b/a