y^2=2px(p>0)的焦点为F,点A,B在此抛物线上,且∠AFB=90°
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/11 06:00:47
y^2=2px(p>0)的焦点为F,点A,B在此抛物线上,且∠AFB=90°
y^2=2px(p>0)的焦点为F,点A,B在此抛物线上,且∠AFB=90°,玄AB的中点M在其准线上的射影为M',则|MM'|/|AB|的最大值为 A.√2/2 B.√3/2 C.1 D√3
y^2=2px(p>0)的焦点为F,点A,B在此抛物线上,且∠AFB=90°,玄AB的中点M在其准线上的射影为M',则|MM'|/|AB|的最大值为 A.√2/2 B.√3/2 C.1 D√3
∠AFB=90°,所以|AB|=√|AF|^2+|BF|^2>=|AF|+|BF|/√2
设A、B在准线上投影为A'、B'
|MM'|=1/2*(|AA'|+|BB'|)
而由抛物线第二定义:抛物线上的点到焦点距离等于它到准线的距离
所以|AA'|=|AF| |BB'|=|BF|
所以|MM'|=1/2*(|AF|+|BF|)
|MM'|/|AB|
=1/2*(|AF|+|BF|)/|AB|
设A、B在准线上投影为A'、B'
|MM'|=1/2*(|AA'|+|BB'|)
而由抛物线第二定义:抛物线上的点到焦点距离等于它到准线的距离
所以|AA'|=|AF| |BB'|=|BF|
所以|MM'|=1/2*(|AF|+|BF|)
|MM'|/|AB|
=1/2*(|AF|+|BF|)/|AB|
y^2=2px(p>0)的焦点为F,点A,B在此抛物线上,且∠AFB=90°
抛物线y^2=2px(p>0)的焦点为F,点A、B在此抛物线上,∠AFB=90°,弦AB中点M在其准线上的射影为M'…
1、抛物线y²=2px(p>0)的焦点为F,已知点A、B为抛物线上的两个动点,且满足角AFB=120°,过弦A
设抛物线y平方=2px(p>0)的焦点为F,经过点F的直线交抛物线与A.B两点,点C在抛物线的准线上,且BC平行x轴,证
抛物线y²=2px p>0 的焦点为F 点p1(x1 y1) 点p2(x2y2) p3(x3y3)在抛物线上
AB为抛物线y²=2px(p>0)过焦点的一条弦,A、B在抛物线上,F为焦点.求证1/AF+1/BF=2/p
设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明直
设抛物线 y2=2px (p>0) 的焦点为F 经过点F的直线交抛物线于A,B两点 点C在抛物线的准线上 且BC‖x轴
已知A,B在抛物线y2=2px(p>0)上,O为坐标原点,如果|OA|=|OB|且△AOB的重心恰好是此抛物线的焦点F,
已知抛物线y平方=2px(p>0)的焦点为F 点是抛物线上横坐标为且位于x轴上方 点A到抛物线焦点距离为5 求抛物线方程
若点p在以f为焦点的抛物线y^2=2px(p>0)上,且PF⊥FO,|PF|=2,O为原点
设F为抛物线y^2=2px(p〉0)的焦点,点A在抛物线上,O为坐标原点,若 ∠OFA=120度 ,且向量FO乘向量FA