数列{An}中,A1=1,An大于0,(n+1)*An+1的平方-n*An的平方+An+1*An=0,(n属于N*)求A
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 01:32:04
数列{An}中,A1=1,An大于0,(n+1)*An+1的平方-n*An的平方+An+1*An=0,(n属于N*)求An的通项公式
(n+1)*(A[n+1])^2-n*(A[n])2+(A[n+1])*A[n]
=n((A[n+1])^2-(A[n])^2)+((A[n+1])^2+A[n+1]*A[n])
=n(A[n+1]+A[n])(A[n+1]-A[n])+A[n+1]*(A[n+1]+A[n])
=(A[n+1]+A[n])(nA[n+1]-nA[n]+A[n+1])
=(A[n+1]+A[n])((n+1)A[n+1]-nA[n])
=0
又因An>0
所以,只有 (n+1)A[n+1]-nA[n]=0
即 (n+1)A[n+1]=nA[n]
A[n+1]/A[n]=n/(n+1)
将上式从1取到n-1,然后两边相乘就有:
A[2]/A[1]=1/2
A[3]/A[2]=2/3
A[4]/A[3]=3/4
.
A[n]/A[n-1]=(n-1)/n
所以 A[n]=1/n*A1=1/n
即 A[n]=1/n
=n((A[n+1])^2-(A[n])^2)+((A[n+1])^2+A[n+1]*A[n])
=n(A[n+1]+A[n])(A[n+1]-A[n])+A[n+1]*(A[n+1]+A[n])
=(A[n+1]+A[n])(nA[n+1]-nA[n]+A[n+1])
=(A[n+1]+A[n])((n+1)A[n+1]-nA[n])
=0
又因An>0
所以,只有 (n+1)A[n+1]-nA[n]=0
即 (n+1)A[n+1]=nA[n]
A[n+1]/A[n]=n/(n+1)
将上式从1取到n-1,然后两边相乘就有:
A[2]/A[1]=1/2
A[3]/A[2]=2/3
A[4]/A[3]=3/4
.
A[n]/A[n-1]=(n-1)/n
所以 A[n]=1/n*A1=1/n
即 A[n]=1/n
数列{An}中,A1=1,An大于0,(n+1)*An+1的平方-n*An的平方+An+1*An=0,(n属于N*)求A
已知数列 an 中,a1=1,3an*a(n-1)+an-a(n-1)=0(n大于等于2) 求an通项
已知数列{an}中a1=6,且an-an-1=(an-1/n)+n+1(n属于N*,n≥2),求an
已知数列{an}满足a1=1/2,an+1=an+1/n的平方+n求an
在数列an中,a1=0,a(n+1)=-a1+3的n次方,(n属于N*)求an通项公式
数列an中 a1=3 a(n+1)=an平方 求an通项公式
设数列{an}满足a1+3a2+3平方a3+...+3n-1an=n/3,n属于N*.求数列{an}的通项公式?
数列an中,a1=2,且a(n+1)=an+2^n-n,求通项an,^是平方的意思
已知数列{an}满足a1=33,a(n+1)-an=2n,求an/n的最小值
数列{an}中a1=1 2an+1=(1+1/n)的平方*an 【n属于正整数,2an+1是指a的第n+1项的2倍】
已知数列{an}中 a1=1/2 an+1=an+1/n平方+3n+2求数列{an}的通项公式
数列{an}中a1=3,an+an-1+2n-1=0(n属于N且n>=2)(1)求a2,a3的值