作业帮 > 数学 > 作业

设F1、F2是双曲线x^2-y^2/24的两个焦点,p是双曲线上的点,且|PF1|+|PF2|=14,求三角形PF1F2

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 03:34:10
设F1、F2是双曲线x^2-y^2/24的两个焦点,p是双曲线上的点,且|PF1|+|PF2|=14,求三角形PF1F2的面积
设F1、F2是双曲线x^2-y^2/24的两个焦点,p是双曲线上的点,且|PF1|+|PF2|=14,求三角形PF1F2
x^2-y^2/24=1,则双曲线a=1,c=5
|F1F2|=10,
定义,||PF1|-|PF2||=2a=2
又|PF1|+|PF2|=14
故|PF1|=8,|PF2|=6
或|PF1|=6,|PF2|=8
三角形三边6,8,10,直角,故面积=6*8*0.5=24