已知xyz=1,x+y+z=2,x^3+y^3+z^3=3,求1/xy+z-1+1/yz+x-1+1/zx+y-1
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 15:58:14
已知xyz=1,x+y+z=2,x^3+y^3+z^3=3,求1/xy+z-1+1/yz+x-1+1/zx+y-1
由已知条件:
x+y+z=2
x^2+y^2+z^2=3
所以xy+yz+zx=(1/2)[(x+y+z)^2-(x^2+y^2+z^2)]=1/2
又因为左式第一项
1/(xy+z-1)=1/[xy+(2-x-y)-1]=1/[(x-1)(y-1)]
同理
1/(yz+x-1)=1/[(y-1)(z-1)]
1/(zx+y-1)=1/[(z-1)(x-1)]
三式相加(此时通分便很简单)得:
(3-x-y-z)/[(1-x)(1-y)(1-z)]
1/[(1-x)(1-y)(1-z)]
=1/(1-x-y-z+xy+yz+zx-xyz)
=1/(1-2+1/2-1)
=-2/3
x+y+z=2
x^2+y^2+z^2=3
所以xy+yz+zx=(1/2)[(x+y+z)^2-(x^2+y^2+z^2)]=1/2
又因为左式第一项
1/(xy+z-1)=1/[xy+(2-x-y)-1]=1/[(x-1)(y-1)]
同理
1/(yz+x-1)=1/[(y-1)(z-1)]
1/(zx+y-1)=1/[(z-1)(x-1)]
三式相加(此时通分便很简单)得:
(3-x-y-z)/[(1-x)(1-y)(1-z)]
1/[(1-x)(1-y)(1-z)]
=1/(1-x-y-z+xy+yz+zx-xyz)
=1/(1-2+1/2-1)
=-2/3
已知xy:yz:zx=3:2:1,求①x:y:z ②x/yz:y/zx
已知xy/x+y=3,yz/y+z=2,zx/z+x=1,求y的值
已知xy/x+1=1 yz/y+z=2 zx/z+x=3 求x
已知x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,求xy(x+y)+yz(y+z)+zx(z+x)的值
已知x+y分之xy=1,y+z分之yz=2,z+x分之zx=3,求x+y+z的值
X+Y/XY=1,Y+Z/YZ=2,Z+X/ZX=3 求X的值
已知xyz都小于1,xy+yz+zx=1 求证:y/(2-X乘根号3)+z/(2-Y乘根号3)+x/(2-Z乘根...
已知xy:yz:zx=3:2:1,求(x+y):z的值
已知xyz=1,x+y+z=2,x^3+y^3+z^3=3,求1/xy+z-1+1/yz+x-1+1/zx+y-1
已知xyz=1,x+y+z=2,x^2+y^2+z^2=3,求1/(xy+z-1)+1/(yz+x-1)+1/(zx+y
已知x+y+z=3,xy+yz+xz=-1,xyz=2,求x^2y^2+y^2z^2+x^2z^2
已知xy∶yz∶z x=3∶2∶1,求①x∶y∶z ②x/yz:y/zx