欧拉公式到底怎么证明出来的?
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/12 06:47:04
欧拉公式到底怎么证明出来的?
证明 设S,p是三角形ABC的面积与半周长,a,b,c是三角形ABC的三边长.根据三角形己知恒等式:
AI=√[bc(p-a)/p],AO=R,∠IAO=︱B-C︱/2,abc=4R*S=4R*p*r
cos[(B-C)/2]=(b+c)*√[(p-b)*(p-c)/(a^2*bc)]
在三角形AIO中,据余弦定理得:
IO^2=R^2+bc(p-a)/p-2R*√[bc(p-a)/p]*cos[(B-C)/2]
IO^2=R^2+bc(p-a)/p-2R*S(b+c)/(p*a)
IO^2=R^2+bc(p-a)/p-bc*(b+c)/(2p)
IO^2=R^2-abc/(2p)=R^2-2Rr=R*(R-2r)
证毕.
AI=√[bc(p-a)/p],AO=R,∠IAO=︱B-C︱/2,abc=4R*S=4R*p*r
cos[(B-C)/2]=(b+c)*√[(p-b)*(p-c)/(a^2*bc)]
在三角形AIO中,据余弦定理得:
IO^2=R^2+bc(p-a)/p-2R*√[bc(p-a)/p]*cos[(B-C)/2]
IO^2=R^2+bc(p-a)/p-2R*S(b+c)/(p*a)
IO^2=R^2+bc(p-a)/p-bc*(b+c)/(2p)
IO^2=R^2-abc/(2p)=R^2-2Rr=R*(R-2r)
证毕.