数列{an}中,a1=1,an=2Snˆ2/(2Sn-1)(n大于等于2) 1.证明{1∕Sn}是等差数列 2
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 22:47:01
数列{an}中,a1=1,an=2Snˆ2/(2Sn-1)(n大于等于2) 1.证明{1∕Sn}是等差数列 2.求数列{an}的通项公式
1、当n≥2时,根据题意有
a(n)=S(n)-S(n-1)=2S(n)²/[2S(n)-1]
即
2S(n)²-2S(n)S(n-1)-S(n)+S(n-1)=2S(n)²
2S(n)S(n-1)=S(n-1)-S(n)
两边同除以S(n)S(n-1),得
2=1/S(n)-1/S(n-1),n≥2
可见,{1/S(n)}是以 1/S(1)=1/a(1)=1 为首项、2为公差的等差数列.
2、由题目1可知,此时
1/S(n)=1+2(n-1)=2n-1
上式对n≥1成立
则
S(n)=1/(2n-1),n≥1
当n≥2时
a(n)=S(n)-S(n-1)
=1/(2n-1)-1/(2n-3)
=-2/[(2n-1)(2n-3)]
上式对n=1不成立,
故
a(n)=1,当n=1
a(n)=-2/[(2n-1)(2n-3)],当n≥2
a(n)=S(n)-S(n-1)=2S(n)²/[2S(n)-1]
即
2S(n)²-2S(n)S(n-1)-S(n)+S(n-1)=2S(n)²
2S(n)S(n-1)=S(n-1)-S(n)
两边同除以S(n)S(n-1),得
2=1/S(n)-1/S(n-1),n≥2
可见,{1/S(n)}是以 1/S(1)=1/a(1)=1 为首项、2为公差的等差数列.
2、由题目1可知,此时
1/S(n)=1+2(n-1)=2n-1
上式对n≥1成立
则
S(n)=1/(2n-1),n≥1
当n≥2时
a(n)=S(n)-S(n-1)
=1/(2n-1)-1/(2n-3)
=-2/[(2n-1)(2n-3)]
上式对n=1不成立,
故
a(n)=1,当n=1
a(n)=-2/[(2n-1)(2n-3)],当n≥2
数列{an}中,a1=1,an=2Snˆ2/(2Sn-1)(n大于等于2) 1.证明{1∕Sn}是等差数列 2
数列an中,a1=1,当n大于=2时,sn满足sn方=an(sn-1) 证明1/sn是等差数列
已知数列an中,a1=1,当n大于等于2时,sn=an(1-2/sn).求证1/sn是等差数列
数列an中,a1=1,当n大于等于2时,其前n项和满足sn^2=an(sn-1) 证明:数列{1/sn}是等差数列
在数列{An}中,已知A1=1,An=2Sn^2/(2Sn-1),(n>=2),证明{1/Sn}是等差数列,并求Sn
设Sn是数列an的前n项和,已知a1=1,an=-Sn*Sn-1,(n大于等于2),则Sn=
数列an ,a1=1,当n>=2时,an=(根号sn+根号sn-1)/2,证明根号sn是等差数列,求an
在数列an中,Sn是数列an前n项和,a1=1,当n≥2时,sn^2=an(Sn-1/2) (1)证明1/Sn为等差数列
在数列an中 a1=1 An=2Sn^2/(2Sn-1) 证明1/sn是等差数列 并求 sn
已知正项数列an的前n项和为Sn,a1=1,(an-2)²=8Sn-1.证明an是等差数列.
数列{an}中,a1=1,当n大于等于2时,其前n项的和Sn,满足Sn的平方=an(Sn-1)
a1=1,n,an,Sn成等差数列,证明{Sn+n+2}是等比数列