过T(-1,0)作直线与Y^2=4X交于A.B两点,若在X轴上存在一点E(X1,0),使△ABE为等边三角形,求X1的值
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 23:10:30
过T(-1,0)作直线与Y^2=4X交于A.B两点,若在X轴上存在一点E(X1,0),使△ABE为等边三角形,求X1的值
要解题思路和步骤
要有可行性
要解题思路和步骤
要有可行性
令过T(-1,0)的直线为y=k(x+1)
联立y=k(x+1)
y^2=4x
得k^2x^2+(2k^2-4)x+k^2=0,Δ=16-16k^2
令A(Xa,Ya),B(Xb,Yb)
Xa+Xb=(4-2k^2)/k^2
XaXb=1
Ya=k(Xa+1)
Yb=k(Xb+1)
得AB中点C((4-2k^2)/(2k^2),2/k)
过中点C,且与直线y=k(x+1)垂直的直线方程为
y-2/k=-1/k(x-(4-2k^2)/(2k^2))
解得E((2k^2+4)/2k^2,0)
AE长为(4+4/k^2)^(1/2)
AB长为(1+k^2)^1/2*(16-13k^2)^1/2*1/k^2
AE^2=3/4AB^2
解得k=±根号3/2
得X1=19/3
简单来说思路是等边三角形边AB与过AB边中点C的线段CE垂直.
大致思路是这样的,算错是难免的.如果有什么问题,还是麻烦你自己算算,不好意思了.
联立y=k(x+1)
y^2=4x
得k^2x^2+(2k^2-4)x+k^2=0,Δ=16-16k^2
令A(Xa,Ya),B(Xb,Yb)
Xa+Xb=(4-2k^2)/k^2
XaXb=1
Ya=k(Xa+1)
Yb=k(Xb+1)
得AB中点C((4-2k^2)/(2k^2),2/k)
过中点C,且与直线y=k(x+1)垂直的直线方程为
y-2/k=-1/k(x-(4-2k^2)/(2k^2))
解得E((2k^2+4)/2k^2,0)
AE长为(4+4/k^2)^(1/2)
AB长为(1+k^2)^1/2*(16-13k^2)^1/2*1/k^2
AE^2=3/4AB^2
解得k=±根号3/2
得X1=19/3
简单来说思路是等边三角形边AB与过AB边中点C的线段CE垂直.
大致思路是这样的,算错是难免的.如果有什么问题,还是麻烦你自己算算,不好意思了.
过T(-1,0)作直线与Y^2=4X交于A.B两点,若在X轴上存在一点E(X1,0),使△ABE为等边三角形,求X1的值
已知:轨迹C方程y^2=4x,过(-1,0)作直线与轨迹C交A,B两点,若在x轴上存在一点E(x.,0),使△ABE为等
过T(-1,0)做直线l与曲线N:y^2=x交于A、B,在x轴上是否存在E(x,0),使三角形ABE为等边三角形.
p是抛物线y^2=4x上的一点,过P分别作俩直线交抛物线于不同的两点A(X1,X2)B(X2,Y2),PA与PB分别交x
已知抛物线y^2=2px(p大于0),在x轴上是否存在一点M,使过M的任意直线l(x州除外)与抛物线交于A(x1,y1)
直线y=kx(k>0)与双曲线y=4/x交于点A(x1,y1),B(x2,y2)两点,求:2x1y2-x2y1的值.
已知抛物线y∧2=4x的焦点为F.过F的直线l与抛物线交A(x1,x1)B(x2,y2) 两点.T为准线与x轴焦点.现在
过抛物线Y^2=4X的焦点作直线交抛物线于A(X1,Y1),B(X2,Y2)两点,且X1+X2=6,求绝对值AB的值
过y^2=2px(x>0)上一点P(x0,y0)(y0>0)作两直线分别交抛物线于A(X1,Y1)B(X2,Y2)
过抛物线y=4x^2的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,若y1+y2=5
已知,如图,过点E(0,-1)作平行于x轴的直线l,抛物线y= x 2 上的两点A、B的横坐标分别为-1和4,直线AB交
过y^2=2px(x>0)上一点P(x0,y0)(y0>0)作两直线分别交抛物线于A(X1,Y1)B(X2,Y2)1)求