作业帮 > 综合 > 作业

(2010•宿州三模)对于给定数列{cn},如果存在实常数p,q,使得cn+1=pcn+q对于任意n∈N*都成立,我们称

来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/12 21:22:44
(2010•宿州三模)对于给定数列{cn},如果存在实常数p,q,使得cn+1=pcn+q对于任意n∈N*都成立,我们称数列{cn}是“M类数列”.
(I)若an=2n,bn=3•2n,n∈N*,数列{an}、{bn}是否为“M类数列”?若是,指出它对应的实常数p&,q,若不是,请说明理由;
(Ⅱ)若数列{an}满足a1=2,an+an+1=3t•2n(n∈N*),t为常数.
(1)求数列{an}前2009项的和;
(2)是否存在实数t,使得数列{an}是“M类数列”,如果存在,求出t;如果不存在,说明理由.
(2010•宿州三模)对于给定数列{cn},如果存在实常数p,q,使得cn+1=pcn+q对于任意n∈N*都成立,我们称
(I)因为an=2n,则有an+1=an+2,n∈N*
故数列{an}是“M类数列”,对应的实常数分别为1,2.
因为bn=3•2n,则有bn+1=2bnn∈N*
故数列{bn}是“M类数列”,对应的实常数分别为2,0.
(II)(1)因为an+an+1=3t•2n(n∈N*
则有a2+a3=3t•22,a4+a5=3t•24,a2006+a2007=3t•22006,a2008+a2009=3t•22008
故数列{an}前2009项的和S2009=a1+(a2+a3)+(a4+a5)++(a2006+a2007)+(a2008+a2009)+(a2008+a2009)=2+3t•22+3t•24++3t•22006+3t•22008=2+t(22010-4)
故答案为2+t(22010-4)
(2)若数列{an}是“M类数列”,则存在实常数p,q
使得an+1=pan+q对于任意n∈N*都成立,
且有an+2=pan+1+q对于任意n∈N*都成立,
因此(an+1+an+2)=p(an+an+1)+2q对于任意n∈N*都成立,
而an+an+1=3t•2n(n∈N*),且an+1+an+2=3t•2n+1(n∈N*
则有3t•2n+1=3t•p2n+2q对于任意n∈N*都成立,可以得到t(p-2)=0,q=0,
①当p=2,q=0时,an+1=2an,an=2n,t=1,经检验满足条件.
②当t=0,q=0时,an+1=-an,an=2(-1)n-1,p=-1经检验满足条件.
因此当且仅当t=1或t=0,时,数列{an}也是“M类数列”.对应的实常数分别为2,0,或-1,0.