对于任意正数a,b有f(ab)=f(a)+f(b),且f(1)的导数=1 证明f(x) 在零到正无穷可导,求f(x)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 10:47:43
对于任意正数a,b有f(ab)=f(a)+f(b),且f(1)的导数=1 证明f(x) 在零到正无穷可导,求f(x)
设f(x)函数满足f(x1+x2)=f(x1)*f(x2),其中x1,x2为任意实数,而且已知f(0)的导数=2
求f(x)
f(x)的导数
f(a*b)
这题答案第一个好象是ln (x)
第二个好象是e的2t次方
但是我不会求
设f(x)函数满足f(x1+x2)=f(x1)*f(x2),其中x1,x2为任意实数,而且已知f(0)的导数=2
求f(x)
f(x)的导数
f(a*b)
这题答案第一个好象是ln (x)
第二个好象是e的2t次方
但是我不会求
第一题:f(1)的导数=1,故f(x)的导数有两种形式:x或1/x,对其进行积分得f(x)=(1/2)x^2+p或f(x)=lnx+q,{p,q为实数},因为对于任意正数a,b有f(ab)=f(a)+f(b),所以将f(x)=(1/2)x^2+p和f(x)=lnx+q分别代入,f(x)=(1/2)x^2+p显然不对,故将f(x)=lnx+q代入得出q=0满足上式,所以推出f(x)=lnx
证明:任意的M>0,存在N>0,当Ix-x0I
证明:任意的M>0,存在N>0,当Ix-x0I
对于任意正数a,b有f(ab)=f(a)+f(b),且f(1)的导数=1 证明f(x) 在零到正无穷可导,求f(x)
已知函数f(x)对任意实数a,b,都有f(ab)=f(a)+f(b)成立 (1)求f(0)与f(1)的值
已知函数f(x)对任意实数a,b,都有f(ab)=f(a)+f(b)成立 求f(0)与f(1)的值
设f(x)是定义域N*上的函数,f(1)=1,对于任意自然数a,b都有f(a)+f(b)=f(a+b)-ab,求f(x)
已知f(x)是定义在R上的函数,对于任意实数a,b都有f(ab)=af(b)+bf(a),且f(2)=1求f(1\2)的
设函数y=f(x)定义在R上,当x>0时f(x)>1,且对于任意实数a,b∈R,有f(a+b)=f(a)f(b)判断f(
证明:函数f(x),x属于R,若对于任意实数a,b,都有f(a+b)=f(a)+f(b),求证f(x)为奇函数
已知函数f(x)对任意实数a,b都有f(ab)=f(a)+f(b),求证f(1/x)=-f(x).
设f(x)在[a,b]上有二阶导数,且f''(x)>0,证明:函数F(x)=[f(x)-f(a)]/(x-a) 在(a,
设f(x)在(a,b)内连续,且limx->a+f(x)=+无穷,limx->b-f(x)=-无穷,证明f(x)在(a,
定义在R上的函数f(x)满足f(0)=1,且对任意实数a,b有f(a-b)=f(a)-b(2a-b+1),求f(x)的解
已知函数f(x)的定义域为(0,+∞),对于任意正数a,b都有f(ab)=f(a)+f(b)-p其中p为常数,且p>0,