求一道高中数列题若数列{an}满足前n项之和sn=2an-4(n是正整数),b(n+1)=an+2bn,且b1=2,求1
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 00:36:38
求一道高中数列题
若数列{an}满足前n项之和sn=2an-4(n是正整数),b(n+1)=an+2bn,且b1=2,求
1.{bn}通项公式
2.{an}前n项之和Tn
题中Sn和Tn都是an的前n项和
若数列{an}满足前n项之和sn=2an-4(n是正整数),b(n+1)=an+2bn,且b1=2,求
1.{bn}通项公式
2.{an}前n项之和Tn
题中Sn和Tn都是an的前n项和
Sn=2an-4
S(n-1)=2a(n-1)-4
相减
an=Sn-S(n-1)=2an-2a(n-1)
an=2a(n-1)
所以an是等比数列,q=2
a1=S1=2a1-4,a1=4
an=4*2^(n-1)=2^(n+1)
b(n+1)=2^(n+1)+2bn
两边除以2^(n+1)
b(n+1)/2^(n+1)=1+bn/2^n
b(n+1)/2^(n+1)-bn/2^n=1
所以bn/2^n是等差数列,d=1
b1/2^1=1
bn/2^n=1+1*(n-1)=n
bn=n*2^n
Tn=1*2^1+2*2^2+……+n*2^n
2Tn=1*2^2+2*2^3+……+(n-1)*2^n+n*2^(n+1)
相减
Tn=n*2^(n+1)-(2^1+2^2+……+2^n)
=n*2^(n+1)-2*(2^n-1)/(2-1)
=(n-1)*2^(n+1)+2
S(n-1)=2a(n-1)-4
相减
an=Sn-S(n-1)=2an-2a(n-1)
an=2a(n-1)
所以an是等比数列,q=2
a1=S1=2a1-4,a1=4
an=4*2^(n-1)=2^(n+1)
b(n+1)=2^(n+1)+2bn
两边除以2^(n+1)
b(n+1)/2^(n+1)=1+bn/2^n
b(n+1)/2^(n+1)-bn/2^n=1
所以bn/2^n是等差数列,d=1
b1/2^1=1
bn/2^n=1+1*(n-1)=n
bn=n*2^n
Tn=1*2^1+2*2^2+……+n*2^n
2Tn=1*2^2+2*2^3+……+(n-1)*2^n+n*2^(n+1)
相减
Tn=n*2^(n+1)-(2^1+2^2+……+2^n)
=n*2^(n+1)-2*(2^n-1)/(2-1)
=(n-1)*2^(n+1)+2
求一道高中数列题若数列{an}满足前n项之和sn=2an-4(n是正整数),b(n+1)=an+2bn,且b1=2,求1
数列an的前n项和为Sn,Sn=4an-3,①证明an是等比数列②数列bn满足b1=2,bn+1=an+bn.求数列bn
3.设数列{an}的前n项和Sn=2an-4(n∈N+),数列{bn}满足:bn+1=an+2bn,且b1=2.求{bn
若数列{an]满足前n项和Sn=2an-4,bn+1=an+2bn,且b1=2,求:bn;{bn}的前n项和Tn
数列{an}的前n项和Sn=2an-1(n≥1),数列{bn}满足b1=3,b(n+1)=an+bn,求数列{bn}的前
an=2*3^n-1 若数列bn满足bn=an+(-1)^n*ln(an),求数列bn前n项和Sn
已知数列an前n项和为Sn,且满足4(n+1)(Sn+1)=(n+2)^2an(n属于正整数) 求an
已知数列{an}的前n项和为Sn,且满足Sn=2an-1,n为正整数,求数列{an}的通项公式an
已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n属于正整数),求数列{an}的通项公式an
数列an的前n项和为Sn,Sn=2an-1,数列bn满足b1=2,bn+1=an+bn.求数列bn的前n项和Tn
设数列an前n项和为Sn,且an+Sn=1,求an的通项公式 若数列bn满足b1=1且bn+1=bn+an,求数列bn通
数列an的前n项和Sn满足Sn=n^2-8n+1,若bn=|an|,求数列{bn}的通项公式