x-1=9x^2,
y=(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)(x-7)(x-8)(x-9)(x-10)的导数在x=1
设函数f(x)=(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)(x-7)(x-8)(x-9)(x-10),
x/(x-2)+(x-9)/(x-7)=(x+1)/(x-1)+(x-8)/(x-6)谁会解这道方程题
分式方程.x/(x-2)+(x-9)/(x-7)=(x+1)/(x-1)+(x-8)/(x-6)
x/(x-2)+(x+9)/(x-7)=(x+1)/(x-1)+(x-8)/(x-6)怎样解这道方程
解方程:x/(x-2)+(x-9)/(x-7)=(x+1)/(x-1)+(x-8)/(x-6)
x+2/x+3-x+1/x+2=x+8/x+9-x+7/x+8
(1) x-3/x-2 - x-5/x-4=x-7/x-6 - x-9/x-8
(4x+2)/x+(4x-22)/(x-5)=(x-6)/(x-4)+(7x+9)/(x+1)
2x/x^2-9=x-1/x^2-6x+9-1/x+3
1.x/9+x=62.x/x+1 + x+1/2x = 3
(x-2)(x2-6x-9)-x(x-5)(x-3)其中x= -1/3