作业帮 > 数学 > 作业

在三角形ABC中,叫A、B、C的对边分别为a、b、c,且cos(A-C)+cosB=3/2,b^2=ac,求B的大小.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 19:12:19
在三角形ABC中,叫A、B、C的对边分别为a、b、c,且cos(A-C)+cosB=3/2,b^2=ac,求B的大小.
在三角形ABC中,叫A、B、C的对边分别为a、b、c,且cos(A-C)+cosB=3/2,b^2=ac,求B的大小.
由b^2=ac知道a,b.c成等比数列,
则根据正弦定理,a/SinA =b/SinB =c/SinC
知,SinA SinB SinC也成等比数列.
Cos(A-C)+CosB=Cos(A-C)-Cos(A+C),展开得2SinASinC=3/2
则:2·Sin^2 B = 3/2 ;
SinB=√3/2
→B=60°或120°
又根据原题的条件知,CosB>0,
∴B只能为60°
参考:
cos(A-C)+cosB=cos(A-C)-cos(A+C)=cosAcosC+sinAsinC-cosAcosC+sinAsinC
=2sinAsinC=3/2
sinAsinC=3/4
根据正弦定理,a/sinA=b/sinB=c/sinC=2R
b^2=sin^B*4R^2 a=sinA*2R c=sinC*2R
所以,sin^B=sinA*sinC=3/4
因为B