韩信点兵的算法韩信点兵,1001个人一排剩1人,1002个人一排剩4人,求总人数
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 14:10:01
韩信点兵的算法
韩信点兵,1001个人一排剩1人,1002个人一排剩4人,求总人数
韩信点兵,1001个人一排剩1人,1002个人一排剩4人,求总人数
首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人).
在一千多年前的《孙子算经》中,有这样一道算术题:
“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以3余2,除以5余3,除以7余2,求这个数.
这样的问题,也有人称为“韩信点兵”.它形成了一类问题,也就是初等数论中的解同余式.
① 有一个数,除以3余2,除以4余1,问这个数除以12余几?
除以3余2的数有:
2,5,8,11,14,17,20,23….
它们除以12的余数是:
2,5,8,11,2,5,8,11,….
除以4余1的数有:
1,5,9,13,17,21,25,29,….
它们除以12的余数是:
1,5,9,1,5,9,….
一个数除以12的余数是唯一的.上面两行余数中,只有5是共同的,因此这个数除以12的余数是5.
如果我们把①的问题改变一下,不求被12除的余数,而是求这个数.很明显,满足条件的数是很多的,它是 5+12×整数,
整数可以取0,1,2,…,无穷无尽.事实上,我们首先找出5后,注意到12是3与4的最小公倍数,再加上12的整数倍,就都是满足条件的数.这样就是把“除以3余2,除以4余1”两个条件合并成“除以12余5”一个条件.《孙子算经》提出的问题有三个条件,我们可以先把两个条件合并成一个.然后再与第三个条件合并,就可找到答案.
②一个数除以3余2,除以5余3,除以7余2,求符合条件的最小数.
先列出除以3余2的数:
2,5,8,11,14,17,20,23,26,…,
再列出除以5余3的数:
3,8,13,18,23,28,….
这两列数中,首先出现的公共数是8.3与5的最小公倍数是15.两个条件合并成一个就是8+15×整数,列出这一串数是8,23,38,…,再列出除以7余2的数 2,9,16,23,30,…,
就得出符合题目条件的最小数是23.
事实上,我们已把题目中三个条件合并成一个:被105除余23.
那么韩信点的兵在1000-1500之间,应该是105×10+23=1073人
中国有一本数学古书「孙子算经」也有类似的问题:「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?」
答曰:「二十三」
术曰:「三三数剩一置几何?答曰:五乘七乘二得之一百四.
五五数剩一复置几何?答曰,三乘七得之二十一是也.
七七数剩一又置几何?答曰,三乘五得之十五是也.
三乘五乘七,又得一百零五.
则可知已,又
三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得.凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得.」
孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理.
简单扼要总结:
1.算两两数之间的能整除数
2.算三个数的能整除数
3.用1中的三个整除数之和减去2中的整除数之差(有时候是倍数)
4计算结果即可
韩信带1500名兵士打仗,战死四五百人,站3人一排,多出2人;站5人一排,多出4人;站7人一排,多出6人.韩信马上说出人数:1049
如多一人,即可凑整.幸存人数应在1000~1100人之间,即得出:
3乘5乘7乘10减1=1049(人)
在一千多年前的《孙子算经》中,有这样一道算术题:
“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以3余2,除以5余3,除以7余2,求这个数.
这样的问题,也有人称为“韩信点兵”.它形成了一类问题,也就是初等数论中的解同余式.
① 有一个数,除以3余2,除以4余1,问这个数除以12余几?
除以3余2的数有:
2,5,8,11,14,17,20,23….
它们除以12的余数是:
2,5,8,11,2,5,8,11,….
除以4余1的数有:
1,5,9,13,17,21,25,29,….
它们除以12的余数是:
1,5,9,1,5,9,….
一个数除以12的余数是唯一的.上面两行余数中,只有5是共同的,因此这个数除以12的余数是5.
如果我们把①的问题改变一下,不求被12除的余数,而是求这个数.很明显,满足条件的数是很多的,它是 5+12×整数,
整数可以取0,1,2,…,无穷无尽.事实上,我们首先找出5后,注意到12是3与4的最小公倍数,再加上12的整数倍,就都是满足条件的数.这样就是把“除以3余2,除以4余1”两个条件合并成“除以12余5”一个条件.《孙子算经》提出的问题有三个条件,我们可以先把两个条件合并成一个.然后再与第三个条件合并,就可找到答案.
②一个数除以3余2,除以5余3,除以7余2,求符合条件的最小数.
先列出除以3余2的数:
2,5,8,11,14,17,20,23,26,…,
再列出除以5余3的数:
3,8,13,18,23,28,….
这两列数中,首先出现的公共数是8.3与5的最小公倍数是15.两个条件合并成一个就是8+15×整数,列出这一串数是8,23,38,…,再列出除以7余2的数 2,9,16,23,30,…,
就得出符合题目条件的最小数是23.
事实上,我们已把题目中三个条件合并成一个:被105除余23.
那么韩信点的兵在1000-1500之间,应该是105×10+23=1073人
中国有一本数学古书「孙子算经」也有类似的问题:「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?」
答曰:「二十三」
术曰:「三三数剩一置几何?答曰:五乘七乘二得之一百四.
五五数剩一复置几何?答曰,三乘七得之二十一是也.
七七数剩一又置几何?答曰,三乘五得之十五是也.
三乘五乘七,又得一百零五.
则可知已,又
三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得.凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得.」
孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理.
简单扼要总结:
1.算两两数之间的能整除数
2.算三个数的能整除数
3.用1中的三个整除数之和减去2中的整除数之差(有时候是倍数)
4计算结果即可
韩信带1500名兵士打仗,战死四五百人,站3人一排,多出2人;站5人一排,多出4人;站7人一排,多出6人.韩信马上说出人数:1049
如多一人,即可凑整.幸存人数应在1000~1100人之间,即得出:
3乘5乘7乘10减1=1049(人)
韩信点兵的算法韩信点兵,1001个人一排剩1人,1002个人一排剩4人,求总人数
韩信点兵,4个人一组,剩余个2人,7个人一组,剩4个人,11个人一组,剩余2个人,问他手下最少有多少兵?
儿子的 两个人一排 剩一个 三个人一排 剩两个 四个人一排 剩三个 五个人一排 剩四个 六个人一排 剩五个 问一共多少人
韩信点兵,3个人一组,剩余0个人,7个人一组,剩1个人,11个人一组,剩余4个人,问他手下最少有多少兵?
韩信点兵,4人一组剩余2个人,7人一组剩2个人,11人一组剩余8个人,问他手下最少有多少兵?
韩信点兵,4个人一组,剩余2个人,7个人一组,剩4个人,12个人一组,余6个人,问他手下最少有多少兵?
韩信点兵,4个人一组,剩余2个人,7个人一组,剩0个人,11个人一组,剩余3个人,问他手下最少有多少兵
韩信点兵,3个人一组,剩余0个人,7个人一组,剩1个人,11个人一组,剩余3个人,问他手下最少有多少兵?
韩信点兵,4人一组,剩2(N)个人,7人一组,剩2(N)个人,12人一组,余2(N)个人,他手下最少有多少兵
韩信点兵,3个人一组,剩余0个人,7个人一组,剩6个人,12个人一组,余0个人,问他手下最少有多少兵?
韩信点兵,3个人一组.剩余2个人.7个人一组.剩5个人.12个人一组.剩余11个人.问他手下最少有多少兵
韩信点兵,3人一组剩2个人,7人一组剩2人,12人一组剩11人,问他手下最少有多少兵?