作业帮 > 数学 > 作业

如图,△ABC中,AB=AC,∠BAC=90°,D是AC的中点,AF⊥BD于E,交BC与F,连接DF.求证∠ADB=∠C

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 11:43:41
如图,△ABC中,AB=AC,∠BAC=90°,D是AC的中点,AF⊥BD于E,交BC与F,连接DF.求证∠ADB=∠CDF.
图在我空间 图中的虚线及点N 是老师的提示(我也不确定是不是垂直) 画出来的 跟网上的一模一样的图片 题目却不一样 但求思路和写法
写错了 是写出来的题目与网上查的一样 但是图片不一样
如图,△ABC中,AB=AC,∠BAC=90°,D是AC的中点,AF⊥BD于E,交BC与F,连接DF.求证∠ADB=∠C
(请楼主按我写的去画图,估计你应该会明白.)
证明:AB=AC,角BAC=90度,则∠ACB=45°.
过点C作CA的垂线,交AF的延长线于M.则∠MCF=∠DCF=45°.
∠ABD+∠BAE=90°;∠CAM+∠BAE=90°.则∠ABD=∠CAM;
又AB=AC;∠BAD=∠ACM=90°.则⊿BAD≌⊿ACM(ASA),得∠ADB=∠M;AD=CM.
又AD=DC,则CM=DC.
又CF=CF;∠DCF=∠MCF.故⊿DCF≌⊿MCF(SAS),得∠CDF=∠M.
所以,∠ADB=∠CDF.(等量代换)