若f(x)在[a,b]上连续,且对任何[a,b]上连续函数g(x),恒有∫(a到b)f(x)g(x)=0,求证f(x)恒
若f(x)在[a,b]上连续,且对任何[a,b]上连续函数g(x),恒有∫(a到b)f(x)g(x)=0,求证f(x)恒
设f(x)在[a,b]上连续,且对所有那些在[a,b]上满足附加条件g(a)=g(b)=0的连续函数g(x),有∫(a-
若f(x),g(x)在[a,b] 上连续,证明max( f(x) ,g(x ))在[a,b]上连续
证明若f(x)在[a,b]上连续,且对任何x∈[a,b],f(x)≠0则f(x)在[a,b]上恒正或恒负
设f(x) 在[a,b] 上连续,且f(x)>0.求证:∫(a,b)f(x)dx*∫(a,bdx/f(x)≥(b-a)^
f(x)在[a,b]上连续,在(a,b) 内可导,且 f '(x)≤0,F(x)=1/(x-a)∫(x-a)f(t)dt
若函数g(X).f(X)都是奇函数,F(X)=a*g(x)+b*f(X)+2在(0,+∞ )上有最大值5,
若f(x)在[a,b]上连续,在(a,b)内可导,|f'(x)|小于等于M,f(a)=0,求证:f(x)dx在[a,b]
设f‘(x)在[a,b]上连续,且f(a)=0,证明:|∫b a f(x)dx|
若在[a,b]上有f(x)≤g(x)且 ∫ f(x)dx=∫ g(x)d
证明f(x)在区间{a,b}上连续,且不存在任何x属于{a,b]使得f(x)=0 则f(x)在{a,b}上恒正或恒负
若f(x),g(x)在[a,b]上连续,(a,b)内可导,且g(x)≠0,试证明(a,b)内存在§ 使[f(a)-f(ξ