作业帮 > 数学 > 作业

如何求∫cosx/(sinx+cosx)dx,请知道的朋友帮帮忙,

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 17:02:32
如何求∫cosx/(sinx+cosx)dx,请知道的朋友帮帮忙,
如何求∫cosx/(sinx+cosx)dx,请知道的朋友帮帮忙,
解法一:设tan(x/2)=t
则x=2arctant,sinx=2t/(1+t²),cosx=(1-t²)/(1+t²),dx=2dt/(1+t²)
故∫cosx/(sinx+cosx)dx
=∫[(1-t²)/(1+t²)]*[2dt/(1+t²)]/[2t/(1+t²)+(1-t²)/(1+t²)]
=∫2(1-t²)dt/[(1+t²)(1+2t-t²)]
=∫[(1/2)/(t-1-√2)+(1/2)/(t-1+√2)+(1-t)/(1+t²)]dt
=(1/2)[ln│(t-1-√2)(t-1+√2)│]+arctant-(1/2)ln(1+t²)+C (C是积分常数)
=(1/2)ln│(t²-2t-1)/(1+t²)│+arctant+C
=(1/2)ln│(1-t²)/(1+t²)+(2t)/(1+t²)│+arctant+C
=(1/2)ln│cosx+sinx│+x/2+C
=(ln│cosx+sinx│+x)/2+C;
解法二:∫cosx/(sinx+cosx)dx
=(1/2)∫2cosx/(sinx+cosx)dx
=(1/2)∫(sinx+cosx+cosx-sinx)/(sinx+cosx)dx
=(1/2)∫[1+(cosx-sinx)/(sinx+cosx)]dx
=[∫dx+∫d(sinx+cosx)/(sinx+cosx)]/2
=(x+ln│sinx+cosx│)/2+C (C是积分常数).