详细解释一下3个以上的容斥定理
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 10:59:37
详细解释一下3个以上的容斥定理
集合
问题
集合
问题
这是摩根公式 和 容斥定理
(A交B)的补==(A的补)并(B的补)
(A并B)的补==(A的补)交(B的补)
补==取补集
并==取并集
交==取交集
括号表示顺序
n(A1∪A2∪...∪Am)=∑n(Ai)1≤i≤m-∑n(Ai∩Aj)1≤i≤j≤m+∑n(Ai∩Aj∩Ak)-…+(-1)m-1n(A1∩A2…∩Am)1≤I,j,k≤m
注:m-1是-1的指数
这种公式的形式是很复杂的
重在理解
理解了就很好用了
甚至不用背就可以自己写出公式来
解题的时候就得心应手
不过这个公式已经超出了高中的范畴了
高中最多也就讨论m=3的情形
用语言表达似乎很困难
就是说求几个集合的并集可以先把他们统统加起来
但是这样做有些地方就多加了
那么就要减掉一些 (由公式来判断什么需要减去)
但是这样做有些地方就多减了
那么就要加上一些 (由公式来判断什么需要加上)
.
如此重复继续下去
最后得到的结果就是这几个集合的并集
举个例子吧
集合 a1 , a2 , a3
a1={ 1 , 2 , 3 ,4 }
a2={ 2 , 3 , 4 ,5 }
a3={ 3 , 4 , 5 ,1 }
求三个集合的并集
按照这个公式
∑n(Ai)1≤i≤m = a1 + a2 + a3 = { 1 , 2 , 3 ,4 , 2 , 3 , 4 ,5 , 3 , 4 , 5 ,1 }
∑n(Ai∩Aj)1≤i≤j≤m = (a1∩a2 + a2∩a3 + a3∩a1) = { 2 , 3 , 4 } +{ 3 , 4 , 5 } + { 3 ,4 , 1}
∑n(Ai∩Aj∩Ak)1≤i≤j≤m = (a1∩a2∩a3) = { 3 , 4 }
代入公式
三个集合的并集= a1 + a2 + a3 - (a1∩a2 + a2∩a3 + a3∩a1) + (a1∩a2∩a3) = { 1 , 2 , 3 ,4 , 2 , 3 , 4 ,5 , 3 , 4 , 5 ,1 } - ( { 2 , 3 , 4 } +{ 3 , 4 , 5 } + { 3 ,4 , 1 } ) + ( { 3 , 4 } ) = { 1 , 2 , 3 , 4 , 5 }
以上就是这个公式的具体应用
我的表达不是很规范
但是这个公式的方法就是这样的
重在理解 容斥原理百科名片
容斥原理在计数时,必须注意无一重复,无一遗漏.为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理.
编辑本段详细推理
两个集合的容斥关系公式:A∪B = A+B - A∩B (∩:重合的部分) 三个集合的容斥关系公式:A∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C 详细推理如下: 1、 等式右边改造 = {【(A+B - A∩B)+C - B∩C】 - C∩A }+ A∩B∩C
2、文氏图分块标记如右图图:1245构成A,2356构成B,4567构成C 3、等式右边()里指的是下图的1+2+3+4+5+6六部分: 那么A∪B∪C还缺部分7. 4、等式右边【】号里+C(4+5+6+7)后,相当于A∪B∪C多加了4+5+6三部分, 减去B∩C(即5+6两部分)后,还多加了部分4. 5、等式右边{}里减去C∩A (即4+5两部分)后,A∪B∪C又多减了部分5, 则加上A∩B∩C(即5)刚好是A∪B∪C.
编辑本段容斥原理1
如果被计数的事物有A、B两类,那么,A类B类元素个数总和= 属于A类元素个数+ 属于B类元素个数—既是A类又是B类的元素个数.
例1
一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?
分析
依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B类的元素”,“至少有一门得满分的同学”称为“A类和B类元素个数”的总和.
答案
15+12-4=23
试一试
电视台向100人调查前一天收看电视的情况,有62人看过2频道,34人看过8频道,其中11人两个频道都看过.两个频道都没看过的有多少人? 100-(62+34-11)=15
编辑本段容斥原理2
如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总和= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数.
例2
某校六(1)班有学生45人,每人在暑假里都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人? 分析:参加足球队的人数25人为A类元素,参加排球队人数12人为B类元素,参加游泳队的人数24人为C类元素,既是A类又是B类的为足球排球都参加的12人,既是B类又C类的为足球游泳都参加的9人,既是C类又是A类的为排球游泳都参加的8人,三项都参加的是A类B类C类的总和设为X.注意:这个题说的每人都参加了体育训练队,所以这个班的总人数既为A类B类和C类的总和. 答案:25+22+24-12-9-8+X=45 解得X=3
例3
在1到1000的自然数中,能被3或5整除的数共有多少个?不能被3或5整除的数共有多少个? 分析:显然,这是一个重复计数问题(当然,如果不怕麻烦你可以分别去数3的倍数,5的倍数).我们可以把“能被3或5整除的数”分别看成A类元素和B类元素,能“同时被3或5整除的数(15的倍数)”就是被重复计算的数,即“既是A类又是B类的元素”.求的是“A类或B类元素个数”.现在我们还不能直接计算,必须先求出所需条件.1000÷3=333……1,能被3整除的数有333个(想一想,这是为什么?)同理,可以求出其他的条件.
例4
分母是1001的最简分数一共有多少个? 分析:这一题实际上就是找分子中不能与1001进行约分的数.由于1001=7×11×13,所以就是找不能被7,11,13整除的数. 1~1001中,有7的倍数1001/7 = 143 (个);有11的倍数1001/11 = 91 (个),有13的倍数1001/13 = 77 (个);有7´11=77的倍数1001/77 = 13 (个),有7´13=91的倍数1001/91 = 11 (个),有11´13=143的倍数1001/43 = 7 (个).有1001的倍数1个. 由容斥原理知:在1~1001中,能被7或11或13整除的数有(143+91+7)-(13+11+7)+1=281(个),从而不能被7、11或13整除的数有1001-281=720(个).也就是说,分母为1001的最简分数有720个.
例5
某个班的全体学生在进行了短跑、游泳、投掷三个项目的测试后,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一项达到了优秀,达到了优秀的这部分学生情况如下表: 短跑 游泳 投掷 短跑、游泳 短跑、投掷 游泳、投掷 短跑、游泳、投掷
1 7 1 8 1 5 6 6 5 2
求这个班的学生共有多少人? 分析:这个班的学生数,应包括达到优秀和没有达到优秀的. 试一试:一个班有42人,参加合唱队的有30人,参加美术组的有25人,有5人什么都没有参加,求两种都参加的有多少人?
例6
在一根长的木棍上有三种刻度线,第一种刻度线将木棍分成10等份,第二种将木棍分成12等份,第三种将木棍分成15等份.如果沿每条刻度线将木棍锯断,木棍总共被锯成多少段?
分析
很显然,要计算木棍被锯成多少段,只需要计算出木棍上共有多少条不同的刻度线,在此基础上加1就是段数了. 若按将木棍分成10等份的刻度线锯开,木棍有9条刻度线.在此木棍上加上将木棍分成12等份的11条刻度线,显然刻度线有重复的,如5/10和6/12都是1/2.同样再加上将木棍分成15等份的刻度线,也是如此.所以,我们应该按容斥原理的方法来解决此问题.用容斥原理的那一个呢?想一想,被计数的事物有那几类?每一类的元素个数是多少? 解答 不计木棍的两个端点,木棍的内部等分点数分别是9,11,14(相应于10,12,15等分),共计34个 由于5,6的最小公倍数为30,所以10与12等份的等分点在30单位处相重,必须从34中减1. 又由于4,5的最小公倍数为20,所以12与15等份的等分点在20单位和40单位两处相重,必须再减去2, 同样,6,4的最小公倍数为12,所以15与10等份的等分点在12,24,36,48单位处相重,必须再减去4 由于这些相重点各不相同.所以从34个内分点中减去1,再减去2,再减去4,得27个刻度点.沿这些刻度点把木棍锯成28段. 容斥原理用于计算集合并集的元素个数,公式为:
n(A1+A2+……+Am)=n(A1)+n(A2)+……+n(Am)-n(A1A2)-n(A1A3)-……-n(A1Am)
-n(A2A3)-n(A2A4)-……-n(A2Am)-……-n(Am-1Am)+n(A1A2A3)+n(A1A2A4)+……
+n(Am-2Am-1Am)-……+(-1)^(m-1)*[n(A1A2……Am)]
注:n(A)表示集合A的元素个数,A+B表示A∪B,AB表示A∩B
(A交B)的补==(A的补)并(B的补)
(A并B)的补==(A的补)交(B的补)
补==取补集
并==取并集
交==取交集
括号表示顺序
n(A1∪A2∪...∪Am)=∑n(Ai)1≤i≤m-∑n(Ai∩Aj)1≤i≤j≤m+∑n(Ai∩Aj∩Ak)-…+(-1)m-1n(A1∩A2…∩Am)1≤I,j,k≤m
注:m-1是-1的指数
这种公式的形式是很复杂的
重在理解
理解了就很好用了
甚至不用背就可以自己写出公式来
解题的时候就得心应手
不过这个公式已经超出了高中的范畴了
高中最多也就讨论m=3的情形
用语言表达似乎很困难
就是说求几个集合的并集可以先把他们统统加起来
但是这样做有些地方就多加了
那么就要减掉一些 (由公式来判断什么需要减去)
但是这样做有些地方就多减了
那么就要加上一些 (由公式来判断什么需要加上)
.
如此重复继续下去
最后得到的结果就是这几个集合的并集
举个例子吧
集合 a1 , a2 , a3
a1={ 1 , 2 , 3 ,4 }
a2={ 2 , 3 , 4 ,5 }
a3={ 3 , 4 , 5 ,1 }
求三个集合的并集
按照这个公式
∑n(Ai)1≤i≤m = a1 + a2 + a3 = { 1 , 2 , 3 ,4 , 2 , 3 , 4 ,5 , 3 , 4 , 5 ,1 }
∑n(Ai∩Aj)1≤i≤j≤m = (a1∩a2 + a2∩a3 + a3∩a1) = { 2 , 3 , 4 } +{ 3 , 4 , 5 } + { 3 ,4 , 1}
∑n(Ai∩Aj∩Ak)1≤i≤j≤m = (a1∩a2∩a3) = { 3 , 4 }
代入公式
三个集合的并集= a1 + a2 + a3 - (a1∩a2 + a2∩a3 + a3∩a1) + (a1∩a2∩a3) = { 1 , 2 , 3 ,4 , 2 , 3 , 4 ,5 , 3 , 4 , 5 ,1 } - ( { 2 , 3 , 4 } +{ 3 , 4 , 5 } + { 3 ,4 , 1 } ) + ( { 3 , 4 } ) = { 1 , 2 , 3 , 4 , 5 }
以上就是这个公式的具体应用
我的表达不是很规范
但是这个公式的方法就是这样的
重在理解 容斥原理百科名片
容斥原理在计数时,必须注意无一重复,无一遗漏.为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理.
编辑本段详细推理
两个集合的容斥关系公式:A∪B = A+B - A∩B (∩:重合的部分) 三个集合的容斥关系公式:A∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C 详细推理如下: 1、 等式右边改造 = {【(A+B - A∩B)+C - B∩C】 - C∩A }+ A∩B∩C
2、文氏图分块标记如右图图:1245构成A,2356构成B,4567构成C 3、等式右边()里指的是下图的1+2+3+4+5+6六部分: 那么A∪B∪C还缺部分7. 4、等式右边【】号里+C(4+5+6+7)后,相当于A∪B∪C多加了4+5+6三部分, 减去B∩C(即5+6两部分)后,还多加了部分4. 5、等式右边{}里减去C∩A (即4+5两部分)后,A∪B∪C又多减了部分5, 则加上A∩B∩C(即5)刚好是A∪B∪C.
编辑本段容斥原理1
如果被计数的事物有A、B两类,那么,A类B类元素个数总和= 属于A类元素个数+ 属于B类元素个数—既是A类又是B类的元素个数.
例1
一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?
分析
依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B类的元素”,“至少有一门得满分的同学”称为“A类和B类元素个数”的总和.
答案
15+12-4=23
试一试
电视台向100人调查前一天收看电视的情况,有62人看过2频道,34人看过8频道,其中11人两个频道都看过.两个频道都没看过的有多少人? 100-(62+34-11)=15
编辑本段容斥原理2
如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总和= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数.
例2
某校六(1)班有学生45人,每人在暑假里都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人? 分析:参加足球队的人数25人为A类元素,参加排球队人数12人为B类元素,参加游泳队的人数24人为C类元素,既是A类又是B类的为足球排球都参加的12人,既是B类又C类的为足球游泳都参加的9人,既是C类又是A类的为排球游泳都参加的8人,三项都参加的是A类B类C类的总和设为X.注意:这个题说的每人都参加了体育训练队,所以这个班的总人数既为A类B类和C类的总和. 答案:25+22+24-12-9-8+X=45 解得X=3
例3
在1到1000的自然数中,能被3或5整除的数共有多少个?不能被3或5整除的数共有多少个? 分析:显然,这是一个重复计数问题(当然,如果不怕麻烦你可以分别去数3的倍数,5的倍数).我们可以把“能被3或5整除的数”分别看成A类元素和B类元素,能“同时被3或5整除的数(15的倍数)”就是被重复计算的数,即“既是A类又是B类的元素”.求的是“A类或B类元素个数”.现在我们还不能直接计算,必须先求出所需条件.1000÷3=333……1,能被3整除的数有333个(想一想,这是为什么?)同理,可以求出其他的条件.
例4
分母是1001的最简分数一共有多少个? 分析:这一题实际上就是找分子中不能与1001进行约分的数.由于1001=7×11×13,所以就是找不能被7,11,13整除的数. 1~1001中,有7的倍数1001/7 = 143 (个);有11的倍数1001/11 = 91 (个),有13的倍数1001/13 = 77 (个);有7´11=77的倍数1001/77 = 13 (个),有7´13=91的倍数1001/91 = 11 (个),有11´13=143的倍数1001/43 = 7 (个).有1001的倍数1个. 由容斥原理知:在1~1001中,能被7或11或13整除的数有(143+91+7)-(13+11+7)+1=281(个),从而不能被7、11或13整除的数有1001-281=720(个).也就是说,分母为1001的最简分数有720个.
例5
某个班的全体学生在进行了短跑、游泳、投掷三个项目的测试后,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一项达到了优秀,达到了优秀的这部分学生情况如下表: 短跑 游泳 投掷 短跑、游泳 短跑、投掷 游泳、投掷 短跑、游泳、投掷
1 7 1 8 1 5 6 6 5 2
求这个班的学生共有多少人? 分析:这个班的学生数,应包括达到优秀和没有达到优秀的. 试一试:一个班有42人,参加合唱队的有30人,参加美术组的有25人,有5人什么都没有参加,求两种都参加的有多少人?
例6
在一根长的木棍上有三种刻度线,第一种刻度线将木棍分成10等份,第二种将木棍分成12等份,第三种将木棍分成15等份.如果沿每条刻度线将木棍锯断,木棍总共被锯成多少段?
分析
很显然,要计算木棍被锯成多少段,只需要计算出木棍上共有多少条不同的刻度线,在此基础上加1就是段数了. 若按将木棍分成10等份的刻度线锯开,木棍有9条刻度线.在此木棍上加上将木棍分成12等份的11条刻度线,显然刻度线有重复的,如5/10和6/12都是1/2.同样再加上将木棍分成15等份的刻度线,也是如此.所以,我们应该按容斥原理的方法来解决此问题.用容斥原理的那一个呢?想一想,被计数的事物有那几类?每一类的元素个数是多少? 解答 不计木棍的两个端点,木棍的内部等分点数分别是9,11,14(相应于10,12,15等分),共计34个 由于5,6的最小公倍数为30,所以10与12等份的等分点在30单位处相重,必须从34中减1. 又由于4,5的最小公倍数为20,所以12与15等份的等分点在20单位和40单位两处相重,必须再减去2, 同样,6,4的最小公倍数为12,所以15与10等份的等分点在12,24,36,48单位处相重,必须再减去4 由于这些相重点各不相同.所以从34个内分点中减去1,再减去2,再减去4,得27个刻度点.沿这些刻度点把木棍锯成28段. 容斥原理用于计算集合并集的元素个数,公式为:
n(A1+A2+……+Am)=n(A1)+n(A2)+……+n(Am)-n(A1A2)-n(A1A3)-……-n(A1Am)
-n(A2A3)-n(A2A4)-……-n(A2Am)-……-n(Am-1Am)+n(A1A2A3)+n(A1A2A4)+……
+n(Am-2Am-1Am)-……+(-1)^(m-1)*[n(A1A2……Am)]
注:n(A)表示集合A的元素个数,A+B表示A∪B,AB表示A∩B