设经过右焦点F的直线l与椭圆x^2/2+y^2=1交于A,B两点,求三角形AOB的面积最大值.O为原点
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 04:52:57
设经过右焦点F的直线l与椭圆x^2/2+y^2=1交于A,B两点,求三角形AOB的面积最大值.O为原点
椭圆方程:x²/2+y²=1
a²=2,a=√2
b²=1,b=1
c²=a²-b²=2-1=1,c=1
设直线为x=my+1
斜率不存在,即直线为x=1,当x=1时,y=±√2/2
AB=√2,S三角形AOB=1/2×1×√2=√2/2
当斜率存在的时候
将x=my+1代入椭圆
m²y²+2my+1+2y²=2
(m²+2)y²+2my-1=0
y1+y2=-2m/(m²+2)
y1*y2=-1/(m²+2)
点O到直线的距离=1/√(1+m²)
S三角形AOB=1/2×1/√(1+m²)×√(1+m²)[(y1+y2)²-4y1y2]
=1/2*√[(4m²/(m²+2)²+4/(m²+2)]
令t=4m²/(m²+2)²+4/(m²+2)
t=(4m²+4m²+8)/(m²+2)²
=8(m²+2-1)/(m²+2)²
=8/(m²+2)-8/(m²+2)²
令u=1/(m²+2)
t=8t-8t²=-8(t²-t)=-8(t-1/2)²+2
当t=1/2时,t有最大值=2,此时1/(m²+2)=1/2,m=0不合题意,因此t不能取到最大值2
也就是0
a²=2,a=√2
b²=1,b=1
c²=a²-b²=2-1=1,c=1
设直线为x=my+1
斜率不存在,即直线为x=1,当x=1时,y=±√2/2
AB=√2,S三角形AOB=1/2×1×√2=√2/2
当斜率存在的时候
将x=my+1代入椭圆
m²y²+2my+1+2y²=2
(m²+2)y²+2my-1=0
y1+y2=-2m/(m²+2)
y1*y2=-1/(m²+2)
点O到直线的距离=1/√(1+m²)
S三角形AOB=1/2×1/√(1+m²)×√(1+m²)[(y1+y2)²-4y1y2]
=1/2*√[(4m²/(m²+2)²+4/(m²+2)]
令t=4m²/(m²+2)²+4/(m²+2)
t=(4m²+4m²+8)/(m²+2)²
=8(m²+2-1)/(m²+2)²
=8/(m²+2)-8/(m²+2)²
令u=1/(m²+2)
t=8t-8t²=-8(t²-t)=-8(t-1/2)²+2
当t=1/2时,t有最大值=2,此时1/(m²+2)=1/2,m=0不合题意,因此t不能取到最大值2
也就是0
设经过右焦点F的直线l与椭圆x^2/2+y^2=1交于A,B两点,求三角形AOB的面积最大值.O为原点
过椭圆2X^2+Y^2=2上的焦点F的直线L交椭圆于A、B两点,求ΔAOB(O为原点)面积的最大值.
过椭圆x^2/2+y^2=1的一个焦点F作直线l交椭圆于A.B两点.椭圆中心为O.当三角形AOB面积最大时,求直线l的方
已知椭圆x^2/2+y^2=1的右焦点F,O为坐标原点,过F的直线l交椭圆于A、B两点
过椭圆x^2/2+y^2=1的一个焦点F作直线l交椭圆于A,B两点,中心为O当三角形AOB面积最大时,求直线l的方程
直线x+y-1=0与椭圆x^2/4+y^2=1 交于A、B两点,原点为O,求三角形AOB的面积
高2数学椭圆题目过椭圆2X的平方+Y的平方=2的上焦点的直线L交椭圆于A,B两点,求三角形AOB(O为原点)的面积最大值
如图4过椭圆x^2+2y^2=2的一个焦点(-1,0)作直线交椭圆A,B两点O为坐标原点.求三角形AOB面积的最大值
过椭圆C:x^2/6+y^2/2=1的右焦点F作斜率为k(k>0)的直线L与椭圆交于A.B两点.且坐标原点O到直线L的距
过椭圆2x^2+y^2=2的焦点F的直线L交椭圆于A、B两点,求△ABO(O为原点)的面积的最大值.
过椭圆x^2/4+y^2/3=1的右焦点F作直线l交椭圆于A.B两点.求三角形OAB面积的最大值.求简便点的方法
过椭圆X^2/2+y^2=1的一个焦点F作直线l交椭圆于A,B两点,中心为O,当△AOB面积最大时,求直线l的方程