复摆跟单摆有什么区别还有:复摆周期公式中T=2π√(I/mlg)I是物体对轴绳的转动惯量,
来源:学生作业帮 编辑:神马作文网作业帮 分类:物理作业 时间:2024/11/10 17:15:02
复摆跟单摆有什么区别
还有:
复摆周期公式中
T=2π√(I/mlg)
I是物体对轴绳的转动惯量,
还有:
复摆周期公式中
T=2π√(I/mlg)
I是物体对轴绳的转动惯量,
单摆和复摆最本质的区别应该是摆动所绕的轴不一样(单摆是绕点),从而导致了一系列的差异,详述如下:
单摆
simplependulum
质点振动系统的一种,是最简单的摆.绕一个悬点来回摆动的物体,都称为摆,但其周期一般和物体的形状、大小及密度的分布有关.但若把尺寸很小的质块悬于一端固定的长度为l且不能伸长的细绳上,把质块拉离平衡位置,使细绳和过悬点铅垂线所成角度小于5°,放手后质块往复振动,可视为质点的振动,其周期T只和l和当地的重力加速度g有关,即T=2π√(L/g),而和质块的质量、形状和振幅的大小都无关系,其运动状态可用简谐振动公式表示,称为单摆或数学摆.如果振动的角度大于5°,则振动的周期将随振幅的增加而变大,就不成为单摆了.如摆球的尺寸相当大,绳的质量不能忽略,就成为复摆(物理摆),周期就和摆球的尺寸有关了.伽利略第一个发现摆的振动的等时性,并用实验求得单摆的周期随长度的二次方根而变动.惠更斯制成了第一个摆钟.单摆不仅是准确测定时间的仪器?也可用来测量重力加速度的变化.惠更斯的同时代人天文学家J.里希尔曾将摆钟从巴黎带到南美洲法属圭亚那,发现每天慢2.5分钟,经过校准,回巴黎时又快2.5分钟.惠更斯就断定这是由于地球自转引起的重力减弱.I.牛顿则用单摆证明物体的重量总是和质量成正比的.直到20世纪中叶,摆依然是重力测量的主要仪器.
复摆
compoundpendulum
在重力作用下,能绕通过自身某固定水平轴摆动的刚体.又称物理摆.复摆的转轴与过刚体质心C并垂直于转轴的平面的交点O称为支点或悬挂点.摆动过程中,复摆只受重力和转轴的反作用力,而重力矩起着回复力矩的作用.设质量为m的刚体绕转轴的转动惯量为I,支点至质心的距离为s,则复摆微幅振动的周期T=2π√(I/mgs),式中g为重力加速度.它相当于摆长l=I/ms的单摆作微幅振动的周期.在OC的延长线上取O′点使OO′=l(l称等价摆长)则此点称为复摆的摆动中心.支点和摆动中心可互换位置而不改变复摆的周期.知道T和l,就可由周期公式求出重力加速度g.当复摆受到一个冲量作用时,会在支点上引起碰撞反力.若转轴是刚体对支点的惯量主轴,外冲量垂直于支点和质心的连线OC且作用于摆动中心O′上,则支点上的碰撞反力为零.因此,复摆的摆动中心又称撞击中心.机器中有些必须经受碰撞的转动件,如离合器、冲击摆锤等,为防止巨大瞬时力对轴承的危害,应使碰撞冲击力通过撞击中心.
转动惯量
momentofinertia
刚体绕轴转动惯性的度量.其数值为I=(求和符号)Δmiri^2或I=(积分符号)ri^2dm,式中ri为组成刚体的质量微元Δmi(或dm)到转轴的垂直距离;求和号(或积分号)遍及整个刚体.转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关.规则形状的均质刚体,其转动惯量可直接计得.不规则刚体或非均质刚体的转动惯量,一般用实验法测定.转动惯量应用于刚体各种运动的动力学计算中.
描述刚体绕互相平行诸转轴的转动惯量之间的关系,有如下的平行轴定理:刚体对一轴的转动惯量,等于该刚体对同此轴平行并通过质心之轴的转动惯量加上该刚体的质量同两轴间距离平方的乘积.由于和式的第二项恒大于零,因此刚体绕过质量中心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者.
刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量.由此折算所得的质点到转轴的距离,称为刚体绕该轴的回转半径κ,其公式为κ=√I/M,式中M为刚体质量;I为转动惯量.
转动惯量的量纲为L2M,在SI单位制中,它的单位是kg·m2.
刚体绕某一点转动的惯性由更普遍的惯量张量描述.惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小.
单摆
simplependulum
质点振动系统的一种,是最简单的摆.绕一个悬点来回摆动的物体,都称为摆,但其周期一般和物体的形状、大小及密度的分布有关.但若把尺寸很小的质块悬于一端固定的长度为l且不能伸长的细绳上,把质块拉离平衡位置,使细绳和过悬点铅垂线所成角度小于5°,放手后质块往复振动,可视为质点的振动,其周期T只和l和当地的重力加速度g有关,即T=2π√(L/g),而和质块的质量、形状和振幅的大小都无关系,其运动状态可用简谐振动公式表示,称为单摆或数学摆.如果振动的角度大于5°,则振动的周期将随振幅的增加而变大,就不成为单摆了.如摆球的尺寸相当大,绳的质量不能忽略,就成为复摆(物理摆),周期就和摆球的尺寸有关了.伽利略第一个发现摆的振动的等时性,并用实验求得单摆的周期随长度的二次方根而变动.惠更斯制成了第一个摆钟.单摆不仅是准确测定时间的仪器?也可用来测量重力加速度的变化.惠更斯的同时代人天文学家J.里希尔曾将摆钟从巴黎带到南美洲法属圭亚那,发现每天慢2.5分钟,经过校准,回巴黎时又快2.5分钟.惠更斯就断定这是由于地球自转引起的重力减弱.I.牛顿则用单摆证明物体的重量总是和质量成正比的.直到20世纪中叶,摆依然是重力测量的主要仪器.
复摆
compoundpendulum
在重力作用下,能绕通过自身某固定水平轴摆动的刚体.又称物理摆.复摆的转轴与过刚体质心C并垂直于转轴的平面的交点O称为支点或悬挂点.摆动过程中,复摆只受重力和转轴的反作用力,而重力矩起着回复力矩的作用.设质量为m的刚体绕转轴的转动惯量为I,支点至质心的距离为s,则复摆微幅振动的周期T=2π√(I/mgs),式中g为重力加速度.它相当于摆长l=I/ms的单摆作微幅振动的周期.在OC的延长线上取O′点使OO′=l(l称等价摆长)则此点称为复摆的摆动中心.支点和摆动中心可互换位置而不改变复摆的周期.知道T和l,就可由周期公式求出重力加速度g.当复摆受到一个冲量作用时,会在支点上引起碰撞反力.若转轴是刚体对支点的惯量主轴,外冲量垂直于支点和质心的连线OC且作用于摆动中心O′上,则支点上的碰撞反力为零.因此,复摆的摆动中心又称撞击中心.机器中有些必须经受碰撞的转动件,如离合器、冲击摆锤等,为防止巨大瞬时力对轴承的危害,应使碰撞冲击力通过撞击中心.
转动惯量
momentofinertia
刚体绕轴转动惯性的度量.其数值为I=(求和符号)Δmiri^2或I=(积分符号)ri^2dm,式中ri为组成刚体的质量微元Δmi(或dm)到转轴的垂直距离;求和号(或积分号)遍及整个刚体.转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关.规则形状的均质刚体,其转动惯量可直接计得.不规则刚体或非均质刚体的转动惯量,一般用实验法测定.转动惯量应用于刚体各种运动的动力学计算中.
描述刚体绕互相平行诸转轴的转动惯量之间的关系,有如下的平行轴定理:刚体对一轴的转动惯量,等于该刚体对同此轴平行并通过质心之轴的转动惯量加上该刚体的质量同两轴间距离平方的乘积.由于和式的第二项恒大于零,因此刚体绕过质量中心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者.
刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量.由此折算所得的质点到转轴的距离,称为刚体绕该轴的回转半径κ,其公式为κ=√I/M,式中M为刚体质量;I为转动惯量.
转动惯量的量纲为L2M,在SI单位制中,它的单位是kg·m2.
刚体绕某一点转动的惯性由更普遍的惯量张量描述.惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小.
复摆跟单摆有什么区别还有:复摆周期公式中T=2π√(I/mlg)I是物体对轴绳的转动惯量,
复摆周期公式
求复摆周期公式的推导是推导,不是结果
复摆周期的计算及其公式的由来
复摆周期公式最好给一个证明,
求复摆法测薄木板转动惯量的实验原理及步骤
复摆周期公式里根号里面分子中的回转半径是什么?
质量为m,半径为r的细圆环,悬挂于图示的支点p成为一个复摆,圆环对质心c的转动惯量ic=
单摆复摆问题有一悬线长为l质量为m的单摆和一长度同样为l质量也为m可绕一端的水平轴自由转动的匀质细棒构成的复摆。现将单摆
单摆的周期公式 T=2π√(L/g)和弹簧振子的周期公式T=2π√(m/k)的单位
关于单摆周期公式!算最后周期的时候,为什么T=2π/w为啥是2π?单摆运动的角度又不是2π.π是派
求问一个简单复摆周期计算题