如图,△abc等腰直角三角形,∠acb=90°,m、n为斜边ab上的两点,满足AM^2+BN^2=MN^2
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 03:05:55
如图,△abc等腰直角三角形,∠acb=90°,m、n为斜边ab上的两点,满足AM^2+BN^2=MN^2
求∠MCN
求∠MCN
∠MCN=45°
过点b 作be⊥ab,垂足为b,在be上取一点d,使bd=am
三角形cbd≌三角形cam
cd=cm,∠bcd=∠acm
在直角三角形bdn中,有
BD^2+BN^2=nd^2
am^2+bn^2=mn^2
nd=mn
三角形ncd≌三角形ncm
∠mcn=∠ncd
∠ncd=∠bcn+∠bcd=∠bcn+∠acm
∠mcn+∠bcn+∠acm=90°
∠MCN=90°/2=45°
过点b 作be⊥ab,垂足为b,在be上取一点d,使bd=am
三角形cbd≌三角形cam
cd=cm,∠bcd=∠acm
在直角三角形bdn中,有
BD^2+BN^2=nd^2
am^2+bn^2=mn^2
nd=mn
三角形ncd≌三角形ncm
∠mcn=∠ncd
∠ncd=∠bcn+∠bcd=∠bcn+∠acm
∠mcn+∠bcn+∠acm=90°
∠MCN=90°/2=45°
如图,△abc等腰直角三角形,∠acb=90°,m、n为斜边ab上的两点,满足AM^2+BN^2=MN^2
如图,△abc等腰直角三角形,∠acb=90°,m、n为斜边ab上的两点,满足AM^2+BN^2=MN^2,求∠mcn的
如图,△abc等腰直角三角形,∠acb=90°,m、n为斜边ab上的两点,满足AM^2+BN^2=MN^2,证明MCN全
已知M.N为等腰直角三角形ABC斜边AB上的两点,且∠MCN=45°,求证:AM×AM+BN×BN=MN×MN.
已知:M,N为等腰直角三角形ABC斜边AB上两点,且角MCN为45度,求证:AM^2+BN^2=MN^2
三角形abc是等腰直角三角形,角acb等于90度,m,n为斜边ab上两点.满足am的平方加bn的平方等于mn的平方,
等腰直角三角形ABC的斜边AB上有两点M\N,且满足MN平方=BN平方+AM平方,求角MCN的度数
如图,△ABC是等腰直角三角形,∠ACB=90°,M,N为斜边AB上两点,如果∠MCN=45°,证明:AM,MN,NB可
如图,在等腰Rt△ABC的斜边AB上取两点M,N,使∠MCN=45°,记AM=m,MN=n,BN=x,则以线段x、m、n
如图,在等腰直角△ABC的斜边AB上取两点M,N,使∠MCN=45°.记AM=m,MN=x,BN=n.请你判断以线段m,
在△ABC中,∠ACB=90°,AC=BC,M,N为AB上两点,且满足AM²+BN²=MN²
、如图,在等腰Rt△ABC的斜边AB上取两点M、N,使∠MCN=45°,设AM=m,MN=x,BN=n那么: