an前n和sn且sn=2-1/2的n-1次方{bn}为等差数列a1=b1,a2*(b2-b1)=a1 求bn通项?设cn
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 07:28:32
an前n和sn且sn=2-1/2的n-1次方{bn}为等差数列a1=b1,a2*(b2-b1)=a1 求bn通项?设cn=bn/an求cn前n项和
sn=2-1/2的n-1次方
an=sn-sn-1=-(1/2)^(n-2)
a1=-2
a2=-1
a2*(b2-b1)=a1
a2*(d)=a1
d=2
bn=1+(n-1)*2=2n-1
cn=bn/an=(2n-1)/[-(1/2)^(n-2)]
Tn=错位相加求
再问: 错位相加的方法 谢谢
再答: sn=2-1/2的n-1次方 an=sn-sn-1=-(1/2)^(n-2) a1=-2 a2=-1 a2*(b2-b1)=a1 a2*(d)=a1 d=2 bn=-2+(n-1)*2=2n-4 cn=bn/an=(2n-4)/[-(1/2)^(n-2)]=-(n-2)*2^(n-1) Tn=-[-1+0*2^1+1*2^2+2*2^3+....+(n-2)*2^(n-1)] 2Tn=-[-1*2+0*2^2+1*2^3+2*2^4+....+(n-2)*2^n] Tn-2Tn=-Tn=-[-1+2+2^2+2^3+....+*2^(n-1)+(n-2)*2^n] Tn=-1+2+2^2+2^3+....+*2^(n-1)-(n-2)*2^n =-1+2^n-2-(n-2)*2^n=-n2^n+3*2^n-3
an=sn-sn-1=-(1/2)^(n-2)
a1=-2
a2=-1
a2*(b2-b1)=a1
a2*(d)=a1
d=2
bn=1+(n-1)*2=2n-1
cn=bn/an=(2n-1)/[-(1/2)^(n-2)]
Tn=错位相加求
再问: 错位相加的方法 谢谢
再答: sn=2-1/2的n-1次方 an=sn-sn-1=-(1/2)^(n-2) a1=-2 a2=-1 a2*(b2-b1)=a1 a2*(d)=a1 d=2 bn=-2+(n-1)*2=2n-4 cn=bn/an=(2n-4)/[-(1/2)^(n-2)]=-(n-2)*2^(n-1) Tn=-[-1+0*2^1+1*2^2+2*2^3+....+(n-2)*2^(n-1)] 2Tn=-[-1*2+0*2^2+1*2^3+2*2^4+....+(n-2)*2^n] Tn-2Tn=-Tn=-[-1+2+2^2+2^3+....+*2^(n-1)+(n-2)*2^n] Tn=-1+2+2^2+2^3+....+*2^(n-1)-(n-2)*2^n =-1+2^n-2-(n-2)*2^n=-n2^n+3*2^n-3
an前n和sn且sn=2-1/2的n-1次方{bn}为等差数列a1=b1,a2*(b2-b1)=a1 求bn通项?设cn
设数列an前n项和Sn=2n^2,bn为等差数列,且a1=b1,b2*(a2-a1)=b1.设cn=an/bn,求数列c
设数列{an}的前n项和为Sn=2n²{bn}为等比数列,且a1=b1,b2(a2-a1)=b1
设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1.
设数列{an}的前n项和为Sn=2n^2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1.
设数列{an}的前n项和为Sn=2n²,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1,
设数列{an}的前n项和为Sn=2n平方,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1
数列{an}前n项和为Sn=4-1/4^(n-1),数列bn为等差数列,且b1=a1,a2(b2-b1)=a1.设cn=
设数列{an}的前n项和胃Sn=2n^2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1
设数列an的前n项和为Sn=2n∧2,bn为等比数列,且a1=b1,b2(a2-a3)=b1(1)求数列an和bn的通项
设数列{An}的前n项伟Sn=2n^2,{Bn}为等比数列,且a1=b1,(a2-a1)b2=b1
1.设数列{An}的前n项和为Sn=2n^2,{bn}为等比数列,且A1=b1,b2(A2-A1)