一道高中不等式(题设很简单,不过.)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 16:56:37
一道高中不等式(题设很简单,不过.)
已知a,b,c∈R*,且abc=1,求证:1/a+1/b+1/c+3/(a+b+c)>=4
已知a,b,c∈R*,且abc=1,求证:1/a+1/b+1/c+3/(a+b+c)>=4
设a+b+c=x,ab+bc+ac=y,abc=z=1,
则有y^2>=3xz或x=y+9/y^2(由①式可得)
令f(y)=y+9/y^2,则f'(y)=1-18/y^3
易知当y>18^(1/3)时f'(y)>0
即y>18^(1/3)时f(y)递增
又y=ab+bc+ac>=3(abc)^(2/3)=3>18^(1/3)
故f(y)>=f(3)=3+9/9=4
原不等式得证
这是道竞赛题吧
则有y^2>=3xz或x=y+9/y^2(由①式可得)
令f(y)=y+9/y^2,则f'(y)=1-18/y^3
易知当y>18^(1/3)时f'(y)>0
即y>18^(1/3)时f(y)递增
又y=ab+bc+ac>=3(abc)^(2/3)=3>18^(1/3)
故f(y)>=f(3)=3+9/9=4
原不等式得证
这是道竞赛题吧