作业帮 > 数学 > 作业

在四边形ABCD中,对角线AC,BD交于点O,E,F分别是AB,CD的中点,且AC=BD.求证:OM=ON

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 15:07:15
在四边形ABCD中,对角线AC,BD交于点O,E,F分别是AB,CD的中点,且AC=BD.求证:OM=ON
看标题
在四边形ABCD中,对角线AC,BD交于点O,E,F分别是AB,CD的中点,且AC=BD.求证:OM=ON
楼主你好 证明: 取BC的中点O,连接EO,FO 则EP是△ABC的中位线 ∴EP‖AC,EP=1/2AC 同理可得 FP‖BD,FP=1/2BD ∴PF=PE ∴∠PEF=∠PFE ∵∠PEF=∠ONM,∠PFE=∠OMN(内错角) ∴∠ONM=∠OMN ∴OM=ON EF为中位线,所以EF平行BC,所以AN=NC,BM=MD,同理NC=NA,MD=MB,又因为AC=BD,所以abcd为等腰梯形,易得角ACD=角DBC,所以角OD=角OAD,得OA=OD,所以OM=ON
采纳哦