作业帮 > 数学 > 作业

证明1+1/2+1/3+.+1/n>ln(n+1)+n/2(n+1) ,(n>=1),用数学归纳法点做啊

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 11:57:31
证明1+1/2+1/3+.+1/n>ln(n+1)+n/2(n+1) ,(n>=1),用数学归纳法点做啊
证明1+1/2+1/3+.+1/n>ln(n+1)+n/2(n+1) ,(n>=1),用数学归纳法点做啊
构造函数y=1/x
则上式表示(n-1)个小矩形面积的积,比如1/2代表区间[2,3]上以1/2为宽的小矩形
又y=1/x是[1,正无穷)上的凹函数
故上式>积分(n,1)dx/x=lnn(注意积分上限是n不是n-1)
又lnn-ln((n+1)/2)=ln[2n/(n+1)]
容易证明 当n>1时 2n/(n+1)>1
故ln[2n/(n+1)]>0
故上式>lnn>ln[(n+1)/2]
如果导数都没学过,那我就没办法了.