求不定积分Scosx/(a bcosx)dx
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 16:39:32
求不定积分Scosx/(a bcosx)dx
a和b中间是加号
a和b中间是加号
求不定积分∫cosx/(a+bcosx)dx,
可用万能公式代换,
设tan(x/2)=u,x=2arctanu,
dx=2du/(1+u^2),
cosx=(cosx/2)^2-(sinx/2)^2
=[1-(tanx/2)^2]/(secx/2)^2
=[1-(tanx/2)^2]/ [1+(tanx/2)^2]
=(1-u^2)/(1+u^2),
∫cosx/(a+bcosx)dx
=∫[(1-u^2)(2du)/(1+u^2)^2]/[a+b(1-u^2)/(1+u^2)]
=-2∫(u^2-1)du/[(1+u^2)(a+b+au^2-bu^2)],
设m=a+b,n=a-b,
原式=-2∫(1+u^2-2)du/[(1+u^2)(m+nu^2)]
=-2∫du/(m+nu^2)+4∫du/[(1+u^2)(m+nu^2)]
=-2∫du/(m+nu^2)+4∫[du/(m-n)]/(1+u^2)
+4∫[-n/(m-n)]du/(m+nu^2)
=[-2(m+n)/(m-n)]∫du/(m+nu^2) +4∫[du/(m-n)]/(1+u^2)
=-2(m+n)/[√(mn)(m-n) ]∫d[√(n/m)u]/[1+(u√n/m)^2]+4∫[du/(m-n)]/(1+u^2)
=-2(m+n)/[(m-n)√(mn)]arctan(√n/m)u+[4/(m-n)]arctanu]+C
=-2a/[b√(a^2-b^2)]arctan[√(a-b)/(a+b)]tan(x/2)+(2/b)arctan(tanx/2)+C.
可用万能公式代换,
设tan(x/2)=u,x=2arctanu,
dx=2du/(1+u^2),
cosx=(cosx/2)^2-(sinx/2)^2
=[1-(tanx/2)^2]/(secx/2)^2
=[1-(tanx/2)^2]/ [1+(tanx/2)^2]
=(1-u^2)/(1+u^2),
∫cosx/(a+bcosx)dx
=∫[(1-u^2)(2du)/(1+u^2)^2]/[a+b(1-u^2)/(1+u^2)]
=-2∫(u^2-1)du/[(1+u^2)(a+b+au^2-bu^2)],
设m=a+b,n=a-b,
原式=-2∫(1+u^2-2)du/[(1+u^2)(m+nu^2)]
=-2∫du/(m+nu^2)+4∫du/[(1+u^2)(m+nu^2)]
=-2∫du/(m+nu^2)+4∫[du/(m-n)]/(1+u^2)
+4∫[-n/(m-n)]du/(m+nu^2)
=[-2(m+n)/(m-n)]∫du/(m+nu^2) +4∫[du/(m-n)]/(1+u^2)
=-2(m+n)/[√(mn)(m-n) ]∫d[√(n/m)u]/[1+(u√n/m)^2]+4∫[du/(m-n)]/(1+u^2)
=-2(m+n)/[(m-n)√(mn)]arctan(√n/m)u+[4/(m-n)]arctanu]+C
=-2a/[b√(a^2-b^2)]arctan[√(a-b)/(a+b)]tan(x/2)+(2/b)arctan(tanx/2)+C.
求不定积分Scosx/(a bcosx)dx
不定积分1/(a-bcosx) dx怎么积?
不定积分1/(a-bcosx) dx 怎么积?
求不定积分、Scosx·cos2x dx和Scos3x·sinx dx.
求不定积分 ∫(asinx+bcosx)dx/(csinx+dcosx)
不定积分啊!f ' (e^x)=asinx+bcosx 求∫f(x)dx
求∫dx/asinx+bcosx
求不定积分∫dx/(a^x+b)
求不定积分∫ dx/(a+cosx)
求不定积分∫ a^3x dx
求不定积分arcsinx dx
求不定积分a1sinx+b1cosx除以asinx+bcosx;需要详细步骤,