作业帮 > 数学 > 作业

在长方体ABCD-A’B’C’D’中,设对角线BD’与角B出发的三条棱分别成α,β,γ角,求证:cosα^2+cosβ^

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 11:53:36
在长方体ABCD-A’B’C’D’中,设对角线BD’与角B出发的三条棱分别成α,β,γ角,求证:cosα^2+cosβ^2+cosγ^2 = 1.
在长方体ABCD-A’B’C’D’中,设对角线BD’与角B出发的三条棱分别成α,β,γ角,求证:cosα^2+cosβ^
作出空间图
cosα^2+cosβ^2+cosγ^2
=(AB/BD')^2+(BB'/BD')^2+(BD/BD')^2
=(AB^2+BB'^2+BD^2)/BD'^2
=BD'^2/BD'^2=1