设数列{An}的前项n和为Sn,若对于任意的正整数n都有Sn=2an-3n.设bn=an+3 (1)求证:数列{bn}是
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 15:07:51
设数列{An}的前项n和为Sn,若对于任意的正整数n都有Sn=2an-3n.设bn=an+3 (1)求证:数列{bn}是等比列.
(1)求证:数列{bn}是等比列.(2)求出{An}的通项公式.(3)求数列{NAn}的前n项和.
我想知道这题不是bn+1/bn=2.为什么bn=6*2^(n-1),不是应该bn=6*2^n吗?
(1)求证:数列{bn}是等比列.(2)求出{An}的通项公式.(3)求数列{NAn}的前n项和.
我想知道这题不是bn+1/bn=2.为什么bn=6*2^(n-1),不是应该bn=6*2^n吗?
(1)
Sn = 2an-3n
n=1,a1= 3
an = Sn - S(n-1)
= 2an - 2a(n-1) -3
an = 2a(n-1) +3
an+3 =2( a(n-1) + 3)
{ an +3 }是等比数列,q=2
bn = an+3 是等比数列,q=2
(2)
an+3 =2( a(n-1) + 3)
=2^(n-1) .(a1+3)
= 3.2^n
an = -3 +3.2^n
(3)
let
S = 1.2^1+2.2^2+...+n.2^n (1)
2S = 1.2^2+2.2^3+...+n.2^(n+1) (2)
(2)-(1)
S = n.2^(n+1) -(2+2^2+...+2^n)
=n.2^(n+1) -2(2^n-1)
cn = n.an
= n(-3 +3.2^n)
= 3(n.2^n) - 3n
Tn = c1+c2+...+cn
=3S - 3n(n+1)/2
=3n.2^(n+1) -6(2^n-1) - 3n(n+1)/2
= 6-[3n(n+1)/2] +(6n-6).2^n
Sn = 2an-3n
n=1,a1= 3
an = Sn - S(n-1)
= 2an - 2a(n-1) -3
an = 2a(n-1) +3
an+3 =2( a(n-1) + 3)
{ an +3 }是等比数列,q=2
bn = an+3 是等比数列,q=2
(2)
an+3 =2( a(n-1) + 3)
=2^(n-1) .(a1+3)
= 3.2^n
an = -3 +3.2^n
(3)
let
S = 1.2^1+2.2^2+...+n.2^n (1)
2S = 1.2^2+2.2^3+...+n.2^(n+1) (2)
(2)-(1)
S = n.2^(n+1) -(2+2^2+...+2^n)
=n.2^(n+1) -2(2^n-1)
cn = n.an
= n(-3 +3.2^n)
= 3(n.2^n) - 3n
Tn = c1+c2+...+cn
=3S - 3n(n+1)/2
=3n.2^(n+1) -6(2^n-1) - 3n(n+1)/2
= 6-[3n(n+1)/2] +(6n-6).2^n
设数列{An}的前项n和为Sn,若对于任意的正整数n都有Sn=2an-3n.设bn=an+3 (1)求证:数列{bn}是
设数列﹛an﹜的前n项和为Sn,若对于任意的正整数n都有Sn=2an-3n.设bn=an+3,求证数列﹛bn﹜是等比数列
设数列{an}的前n项和为sn,若对于任意的正整数n都有sn=2an-3n.(1)设bn=an+3,证明:数列{bn}是
已知数列{an}的前n项和为Sn,且对任意的n属于正整数有an+Sn=n (1)设bn=an-1,求证:数列{bn}是等
设数列{an}的前n 项和为Sn,对于任意的正整数n,都有an=5Sn+1成立,设bn=(4+an)/(1-an)(n∈
已知数列{an}的前n和为Sn,且Sn=2an+n^2-3n-2 n为正整数求证:1数列是等比数列2设bn=an*cos
设数列an的前n项和为sn,对任意的正整数n,都有an=5sn+1成立,记bn=(4+an)/(1-an)(n是正整数)
已知数列an的前n项的和为sn,且对任意n∈N有an+sn=n,设bn=an-1,求证数列bn是等比数列
设数列{An}的前n项和为Sn,且满足Sn=2An-3n,n=1,2,3……(1)设Bn=An+3,求证:数列{Bn}是
设数列{An}的前n项和为Sn,已知A1=a,A(n+1)=Sn+3∧n,n是正整数,设Bn=Sn-3∧n,求数列{Bn
数列{an}的前项n的和为Sn,存在常数A、B、C,使得an+Sn=An^2+Bn+C对任意正整数n都成立.(1)若数列
设数列{an}的前n项和为Sn=2an-4,bn=log2an,cn=1/bn^2,求证:数列{an}是等比数列?