数列{an} {bn}满足:a1=0 a2=1 a(n+2)=[an+a(n+1)]/2 bn=a(n+1)-an 求证
数列{an} {bn}满足:a1=0 a2=1 a(n+2)=[an+a(n+1)]/2 bn=a(n+1)-an 求证
已知数列{an}{bn}满足a1=1,a2=3,b(n+1)/bn=2,bn=a(n+1)-an,(n∈正整数),求数列
已知数列an,bn满足a1=1,a2=3,(b(n)+1)/bn=2,bn=a(n+1)-an,(n∈正整数)
数列{an}和{bn}中,a1=1,a2=2,an>0,bn=根号(an*a(n+1))(n为正整数),且{bn}是以q
已知数列{an}满足:a1=1,a2=a(a>0),数列{bn}满足:bn=anan+2(n∈N*)
数列an中,a1=1,a2=2数列bn满足an+1+(-1)n次an,a属于N* (1)若an等差数列...
已知数列{an}满足a1+a/4,(1-an)a(n+1)=1/4,令bn+an-1/2 求证数列{1/bn}为等差数列
在数列{an}中,已知a1=-1,an+a(n+1)+4n+2=0 (1)求bn=an+2n,求证:{bn}为等比数列
已知数列an和bn满足a1=2,(an)-1=an[a(n+1)-1],bn=an-1,n属于N*
急 设A1=2,A2=4,数列Bn满足:Bn=A(n+1)-An,B(n+1)=2Bn +2
急 设A1=2,A2=4,数列BN满足:Bn=A(n+1)-An,B(n+1)=2Bn+2
设a1=2,a2=4,数列{bn}满足:bn=a(n+1)-an,b(n+1)=2bn+2.