数学分析不等式证明证:对每个自然数n成立:(1+1/n)^n>(∑1/k!)-e/(2n) .其中∑是对k从0到n求和.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 00:43:47
数学分析不等式证明
证:对每个自然数n成立:(1+1/n)^n>(∑1/k!)-e/(2n) .
其中∑是对k从0到n求和.似乎要将不等式左边展开,再用辅助不等式:(1-1/2)(1-1/3)...(1-1/k)>1-1/2-1/3-...-1/k .我不得要领,
数学归纳法不妨试试,不过那个字母e有些烦人,e=2.718281828...归纳法倒是很难,电灯剑客说的很正确,我后来这样做了,我先证明了:xln(1+1/x)>1+ln(1-1/(2x)),x≥1。记y=1/x,则0<y≤1,记f(y)=ln(1+y)-y+y^2/2,求导知f严格单增,f(y)>f(0)=0,故有ln(1+1/x)>1/x-1/(2x^2)>0,xln(1+1/x)>1-1/(2x)。又由ln(1-1/(2x))的幂级数展开知(显然x≥1时级数收敛到ln(1-1/(2x))):ln(1-1/(2x))<-1/(2x)-1/8x^2,故1+ln(1-1/(2x))<1-1/(2x)-1/8x^2<1-1/(2x)<xln(1+1/x),故(1+1/x)^x>e(1-1/(2x)),x≥1,从而:(1+1/n)^n>e(1-1/(2x))>(∑1/k!)-e/(2n) 证必。证明中我没有用到中值定理...
证:对每个自然数n成立:(1+1/n)^n>(∑1/k!)-e/(2n) .
其中∑是对k从0到n求和.似乎要将不等式左边展开,再用辅助不等式:(1-1/2)(1-1/3)...(1-1/k)>1-1/2-1/3-...-1/k .我不得要领,
数学归纳法不妨试试,不过那个字母e有些烦人,e=2.718281828...归纳法倒是很难,电灯剑客说的很正确,我后来这样做了,我先证明了:xln(1+1/x)>1+ln(1-1/(2x)),x≥1。记y=1/x,则0<y≤1,记f(y)=ln(1+y)-y+y^2/2,求导知f严格单增,f(y)>f(0)=0,故有ln(1+1/x)>1/x-1/(2x^2)>0,xln(1+1/x)>1-1/(2x)。又由ln(1-1/(2x))的幂级数展开知(显然x≥1时级数收敛到ln(1-1/(2x))):ln(1-1/(2x))<-1/(2x)-1/8x^2,故1+ln(1-1/(2x))<1-1/(2x)-1/8x^2<1-1/(2x)<xln(1+1/x),故(1+1/x)^x>e(1-1/(2x)),x≥1,从而:(1+1/n)^n>e(1-1/(2x))>(∑1/k!)-e/(2n) 证必。证明中我没有用到中值定理...
提示一下,左边用Taylor中值定理来估计e^{1/n},右边直接放大到e(1-1/(2n)).
数学分析不等式证明证:对每个自然数n成立:(1+1/n)^n>(∑1/k!)-e/(2n) .其中∑是对k从0到n求和.
求和证明不等式求证∑k=2(1/k-ln1/k)>(n-1)/2(n+1).其中k=5是在∑下面,上面是n
使不等式2^n>n^2+1对任意n≥k的自然数都成立的最小k值为__________
对n^-2从1到n求和公式谁知道?
n 证明:(1+1/2+1/3+...+1/n)∑ln[k(k+1)(k+2)>(n-1/4)ln(e^n/n!) (n
用数学归纳法证明“1+12+13+…+12n−1<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+
对于C(n,k)*k求和,k从1到n
证明n*(x+1)^(n-1)=Σ(k=0到n)k*c(n,k)*x^(k-1)
用数学归纳法证明“(n+1)(n+2).(n+n)=1*3*...*(2n-1)*2^n”时“从k到k+1”左边需要增乘
幂级数求和,:∑(n从1到正无穷) n*(n+2)*x^n
试证明:∑(i=1到n)C(n,i)*k^(n-i)*k*i=n*k*(k+1)^(n-1)
证明对任意的正整数n,不等式ln(1/n+1)>1/n^2-1/n^3都成立