作业帮 > 综合 > 作业

锂离子电池正极材料分为几种体系?

来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/11 05:35:13
锂离子电池正极材料分为几种体系?
锂离子电池正极材料分为几种体系?
您好!

注:本段内容来自一篇论文

主要包括:锂钴氧化物、锂镍氧化物、锂锰氧化物和聚阴离子正极材料系列.

1. 锂钴氧化物
锂钴氧化物是现阶段商品化锂离子电池中应用最成功、最广泛的正极材料.其在可逆性、放电容量、充放电效率和电压稳定方面是比较好的.
LiCoO2属于α-NaFeO2型结构,它具有二维层状结构,适合锂离子的脱嵌,其理论容量为274mAh/g,但在实际应用中,由于结构稳定性的限制,最多只能把晶格中的一半Li+脱出,因此实际比容量约为140mAh/g 左右,其平均工作电压高达3.7V[60].因其容易制备,具有电化学性能高,循环性能好、性能稳定和充放电性能优良等优点,成为最早大规模商业化应用于锂离子电池的正极材料,目前商品化锂离子电池70%以上仍然采用钴酸锂作为其正极材料.
LiCoO2一般采用高温固相法制备,该种方法工艺简单、容易操作、适宜于工业化生产,但是也存在着以下缺点:反应物难以混合均匀,需要较高的反应温度和较长的反应时间,能耗大,产物颗粒较大,形貌不规则,均匀性差,并且难以控制,从而导致电化学性能重现性差.为了克服固相反应的缺点,溶胶-凝胶法[61,62]、水热法[63]、共沉淀法[64]、模板法[65]等方法被用来制备LiCoO2,这些方法的优点是可以使Li+和Co2+之间充分接触,基本达到原子水平的混合,容易控制产物的粒径和组成.但是这类制备方法工序比较繁琐,工艺流程复杂,成本高,不适用于工业化生产.

2. 锂镍氧化物
镍酸锂(LiNiO2)为立方岩盐结构,与LiCoO2相同,但其价格比LiCoO2低.LiNiO2理论容量为276mAh/g,实际比容量为140~180mAh/g,工作电压范围为2.5V~4.2V[66],无过充或过放电的限制,具有高温稳定性好,自放电率低,无污染,是继LiCoO2之后研究得较多的层状化合物.但LiNiO2作为锂离子电池正极材料存在以下问题亟待研究解决.
首先,LiNiO2制备困难,要求在富氧气氛下合成,工艺条件控制要求较高且易生成非计量化合物.LiNiO2合成技术的关键是将低价的镍完全转变为高价镍,高温虽然可以实现LiNiO2的高效合成,但由于温度超过600℃时合成过程中的Ni2O3易分解成NiO2,不利于LiNiO2的形成,所以必须选用苛刻的低温合成方法.此外,在制备三方晶系的LiNiO2过程中,容易生成立方晶系的LiNiO2,由于立方晶系的LiNiO2在非水电解质溶液中无活性,因此,工艺条件控制不当,极易导致LiNiO2材料的电化学性能不稳定或下降[67,68].
其次,LiNiO2与LixCoO2一样,在充放电过程中,也会发生从三方晶系到单斜晶系的转变,导致容量衰减[69],与此同时,相变过程中排放的O2可能与电解液反应,此外,LiNiO2在高脱锂状态下的热稳定性也较差[70,71],易于引发安全性问题.可喜的是,通过掺入少量Cu、Mg、Al、Ti、Co等金属元素[72,73],可使LiNiO2获得较高的放电平台和电化学循环稳定性.

3. 锂锰氧化物
我国锰资源储量丰富,而且锰无毒,污染小,因此层状结构的LiMnO2和尖晶石型的LiMn2O4都成为了正极材料研究的热点.
锂锰氧化物主要有层状LiMnO2和尖晶石型LiMn2O4两类.LiMnO2属于正交晶系,岩盐结构,氧原子分布为扭变四方密堆结构,其空间点群为Pmnm,理论比容量达到286mAh/g,充放电范围为2.5~4.3V,是一种较有开发前景的正极材料.缺点是其在循环过程中,晶型易转变为尖晶石型结构,使其比容量下降.目前提高其电化学性能的手段有掺杂和合成复合材料等[74].LiMn2O4为尖石型结构,立方晶系,Fd3m点群,其Mn2O4框架是一个四面体与八面体共面的三维结构,Li从Mn2O4框架中进行嵌入/脱嵌,在Li+嵌/脱过程中晶体各向同性地膨胀/收缩,晶体结构体积变化极小.尖石型结构LiMn2O4可以产生4.0 V的高电压平台,理论容量为148mAh/g,与LiCoO2容量接近.尖石型结构LiMn2O4不但可以进行锂的完全脱嵌,还可通过改变掺杂离子的种类和数量及掺杂阴(阳)离子来改变电压、容量和循环性能.尖晶石型LiMn2O4作为锂离子电池正极材料,循环过程中容量会发生缓慢衰减,影响其应用.容量缓慢衰减主要有以下三方面原因[75,76]:(1) 锰在电解液中发生溶解;(2) Jahn-Teller效应致使结构破坏;(3) 因为Mn4+的氧化性,高度脱锂后的尖晶石结构不稳定.目前通常采用掺杂或包覆等方法对其电化学性能进行改善[77].

4. 锰镍钴复合氧化物
层状锰镍钴复合氧化物正极材料综合了LiCoO2、LiNiO2、LiMnO2 三种层状材料的优点,其综合性能优于以上任一单一组分正极材料,存在明显的三元协同效应:通过引入Co,能够减少阳离子混合占位情况,有效稳定材料的层状结构;通过引入Ni,可提高材料的容量;通过引入Mn,不仅可以降低材料成本,而且还可以提高材料的安全性.而LiMnxNiyCo1-x-yO2材料充放电平台略高于LiCoO2,适合现有各类锂离子电池应用产品,有望取代现有各类其他正极材料.

5. 锂钒氧化物
钒为多价态金属,与锂可形成多种氧化物,主要包括层状的LiVO2、LixV2O4、Li1+xV3O8和尖晶石型LiV2O4、反尖晶石型LiVMO4(M=Ni, Co).
1957年Wadsley提出用层状Li1+xV3O8作为锂离子电池正极材料[78].层状Li1+xV3O8的结构由八面体和三角双锥组成,锂离子位于八面体位置,与层之间用离子键固定,过量的锂占据层间四面体位置.这种结构使其循环性能非常稳定,缺点是材料的电导率低,氧化性强,改进的方法有在层状结构中嵌入无机分子[79]、材料采用超声波处理[80]等.层状Li1+xV3O8的合成方法主要有高温固相法和液相反应法.层状Li1+xV3O8具有比容量高、循环性能好的优点,因此成为一种很有潜力的锂离子电池正极材料.但Li1+xV3O8电压平台较低,在2~3.7V之间存在多个平台,而且其导电率低,氧化能力强,易导致有机电解液分解.

6. 锂铁氧化物
随着锂二次电池的出现,人们对可脱嵌锂离子的层状LiFeO2就进行了许多深入的研究[81, 82].但由于Fe4+/Fe3+电对的Fermi能级与Li+/Li的相隔太远,而Fe3+/Fe2+电对又与Li+/Li的相隔太近,因此层状LiFeO2一直未能得到应用.1997年Padhi [83]等首次报道具有橄榄石型结构的LiFePO4能可逆地嵌入和脱嵌锂离子.PO43-不但把Fe3+/Fe2+电对能级降低到能应用的级别,而且通过强的Fe-O-P的诱导效应稳定了Fe3+/ Fe2+的反键态,使Fe具有较强的离子性,从而产生了3.4伏左右的高电位.但因其导电性差,不适宜大电流充放电,无法实际应用,所以当时未受到重视.近几年来,随着对LiFePO4导电机理的认识不断提高,各种改善其导电性能的方法不断出现,使LiFePO4的实际应用成为了可能.Thackeray[84]认为LiFePO4的发现,标志着“锂离子电池一个新时代的到来”.
再问: 谢谢你,可能是我的提问不准确吧,可以通过材料不同的工作原理来分类么?
再答: 您好! 从包装形式的角度 a.柱式吕壳电芯 标准品,散热好,容量密度高,打包工艺相对复杂,价格适中(强烈推荐) b.假聚合物软包 非标品,散热不好,容量密度不高,打包工艺相对简单,价格适中(推荐) c.真聚合物软包 非标品,散热一般,容量密度不高,打包工艺相对简单,价格很贵(你用得起的话强烈推荐) 这个是您想要的么?望采纳。如果不是,恕鄙人无能,我对锂电池的了解仅限于此,因为我的学习方向只需要了解这么多,我确实不够专业。