如图抛物线y=ax2-5ax=4经过三角形ABC的三个顶点,已知BC平行于X轴,点A在x轴上,点C在y轴上,且AC=BC
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 00:52:11
如图抛物线y=ax2-5ax=4经过三角形ABC的三个顶点,已知BC平行于X轴,点A在x轴上,点C在y轴上,且AC=BC
1.对称轴是直线x=-(-5a/2a)=5/2=2.5
2,在y=ax��-5ax+4中,
令X=0得Y=4所以C(0,4)
又因为BC∥X轴,所以BC=5,
所以B(5,4)又因为AB=BC∴AB=5
由勾股定理得OA=3∴A(-3,0)
把A(-3,0)代入y=ax��-5ax+4中得
a=-1/6
∴Y=-1/6X��+5/6X+4.
3.令P(2/5,m),易知|AB|=√80 |AC|=√121/4+m�� |BC|=√25/4+(m-4)��
若|AB|= |AC|,m=-√199/2
若|AB|= |BC|,m=(8-√295)/2
若|AC|=|BC|,m=-1
所以满足条件的P点共有三个:
(5/2,-√199/2),(5/2,(8-√295)/2),(5/2,-1)
2,在y=ax��-5ax+4中,
令X=0得Y=4所以C(0,4)
又因为BC∥X轴,所以BC=5,
所以B(5,4)又因为AB=BC∴AB=5
由勾股定理得OA=3∴A(-3,0)
把A(-3,0)代入y=ax��-5ax+4中得
a=-1/6
∴Y=-1/6X��+5/6X+4.
3.令P(2/5,m),易知|AB|=√80 |AC|=√121/4+m�� |BC|=√25/4+(m-4)��
若|AB|= |AC|,m=-√199/2
若|AB|= |BC|,m=(8-√295)/2
若|AC|=|BC|,m=-1
所以满足条件的P点共有三个:
(5/2,-√199/2),(5/2,(8-√295)/2),(5/2,-1)
如图抛物线y=ax2-5ax=4经过三角形ABC的三个顶点,已知BC平行于X轴,点A在x轴上,点C在y轴上,且AC=BC
抛物线y=ax^-5ax+4经过三角形ABC的三个顶点,点A.C分别在x.y轴上,且BC//x轴,AC=BC.点P在对称
如图,抛物线y=ax²-5ax+4经过△ABC的三个顶点,点A,C分别在x轴,y轴上,且BC‖x轴,AC=BC
如图,抛物线y=ax²-5ax+4经过△ABC的三个顶点,已知BC‖x轴,点A在x轴上,点C在y
如图,直线y=x+2与x轴交于点A,与y轴交于点B,AB⊥BC,且点C在x轴上,若抛物线y=ax2+bx+c以C为顶点,
如图,已知抛物线y=ax2+bx经过点A(2,0)、B(3,3),顶点为C,直线BC与y轴交于点D,点P是x轴负半轴上的
已知抛物线y=ax2+bx+c经过A(0,2),点B(0,4),作AC垂直于AB交x轴于点C,点C正好在此抛物线上.
如图6,Rt△ABC中,∠C=90°,BC平行与x轴,AC平行与y轴,点A、B在双曲线y=k/x上,BC=1,点B的纵坐
已知抛物线y=ax²+bx+c的顶点A在x轴上,于y轴的交点B(0,1),且b=-4ac
如图,抛物线的顶点M在x轴上,抛物线与y轴交于点N,且OM=ON=4,矩形ABCD的顶点A、B在抛物线上,C、D在x轴上
如图,在直角坐标系xOy中,抛物线y=2ax2-6ax+6与y轴的公共点为A,点B,C在抛物线上,AB平行X轴,∠AOB
已知抛物线y=ax^2+bx+c的顶点在x轴上方,且经过点(-4,-5).它与y轴交与点C(0,3),与x轴交于A、B两