作业帮 > 历史 > 作业

古代中国为什么没有产生古希腊那样理性意义上的科学家

来源:学生作业帮 编辑:神马作文网作业帮 分类:历史作业 时间:2024/11/13 00:32:49
古代中国为什么没有产生古希腊那样理性意义上的科学家
至少1000字哦
古代中国为什么没有产生古希腊那样理性意义上的科学家
中国古代科学的构造性、机械化的算法体系完全有别于以古希腊为代表的西方科学的逻辑风格和演绎体系.为什么会出现这两种不同风格的科学体系、科学思想?难道是民族智力差异所造成的?答案当然是否定的.科学文化史的研究表明,在人类文化发展过程中,每一种文化系统都有其特定的数学发展和构造模式,科学既是在某个文化系统中发生发展的必然产物,又是文化系统中一种文化的特定的表现形式,不同的文化传统会形成不同形式的数学与科学技术的结构形式.因此可以说,中西文化传统的差异造成了中西古代科学思想以及科学结构形式的差异.换句话说,文化传统往往规定了科学发展的必然取向.
以数学为例分析:
一、从中西古代数学文化史的比较意义上分析,形成中西古代数学的两种倾向:逻辑演绎倾向和机械化算法倾向,其作用与构造差异主要是由文化系统赋予的文化层次及其价值取向的差异造成的,这两种倾向的对立统一就构成了数学自身内在的矛盾运动和发展动力.
数学文化史的研究表明,人类古代数学作为文化系统中一个操作运演的子系统,从一开始就具有双重功能(或称为双重特性),即数量性的功能和神秘性的功能(注:王宪昌,《数学与人类文明》,延安大学出版社,1990年第58-70页.).而不同民族文化中的数字或数学都在特定的文化氛围中有某些神秘性,而且不同民族文化中的数学神秘性发展的道路是各不相同的.
在古希腊文化的发展中,原始数学始终沿着神秘性和数量性的双重功能统一性继承的轨道向前发展.古希腊数学与神秘性的结合,使得他们从宗教、哲学的层次追求数学的绝对性以及解释世界的普遍性地位,这正是古希腊数学完全脱离实际问题,追求逻辑演绎的严谨性的文化背景.
古希腊人在从蒙昧走向文明的过程中,于公元前8世纪丢掉他们的象形文字而采用腓尼基的拼音字母时,就吸收了埃及与巴比伦的数学成果,这时的古希腊数学,实际上是古希腊原始数学神秘主义与埃及、巴比伦的数学的结合体,这种结合创造了数学体系、数学运演与数学方法的广泛的神秘解释作用.这种文化传统正是古希腊数学具有强烈的神秘作用以及后来具有宗教、哲学特征的根本原因.毕达哥拉斯学派就已将数学着上宗教色彩,其“万物皆数”和追求“数的和谐”观念把数学的这两种功能牢牢地结合在一起,并使之运演操作,共同发展.到了古希腊最有影响的大哲学家柏拉图的唯心主义哲学,把数学的神秘性及数量性意义演化为一种哲学意义的数学理性,直到亚里士多德认为“数就是宇宙万有之物质”(注:亚里士多德,《形而上学》,中译本,商务印书馆,1984年,1986a.),古希腊借助于数学解释一切的文化传统使数学成为具有文化意义的理性基础.古希腊与西方的天文、医学、逻辑、音乐、美术、宗教、哲学中,数学都在发挥着理性的解释作用,并随着西方文化的发展而不断得以继承和强化.基督教神学逐渐吸收了古希腊用数学解释世界的文化传统,在托马斯·阿奎那(1225-1274)的努力下,把以数学为理性模式的自然科学以及由数学而产生的各观念都与神学结合起来,使得数学成为当时自然知识和神学相结合的这座大厦的基石(注:丹皮尔,《科学史》,商务印书馆,1975年第13页.).文艺复兴时期对古希腊数学理性的归复使欧洲人知道了自然界是按照数学方式设计的,数学被认为是唯一的真理体系.“这个理论鼓舞了十六、十七甚至一些十八世纪的数学家的工作.寻找大自然的数学规律是一项虔诚的工作,是为了研究上帝的本性和做法以及上帝安排宇宙的方案”(注:M.克莱因,《古今数学思想》,中译本,上海科学技术出版社,1979年第252页.).直到今天,西方著名科学哲学家波普尔还认为《几何原本》是一种对当时宇宙理论、物理理论给出“一切物理解释和论述的基本工具”(注:波普尔,《猜想与反驳》,上海译文出版社,1986年第123页.).英国哲学家兼数学家罗素认为在西方文化中“数学是我们信仰永恒的与严格的真理的根源.”(注:罗素,《西方哲学史》(上),商务印书馆,1983年第64页.)他进一步总结指出:“数学与神学的结合开始于毕达哥拉斯,它代表了希腊、中世纪的以至直迄康德为止的近代的宗教哲学的特征.”(注:罗素,《西方哲学史》(上),商务印书馆,1983年第64页.)
因此,从数学文化史的意义上分析,发端于古希腊的西方数学不仅仅是一个数学意义的运演操作系统,更主要的是它作为一种文化系统中起主导作用的理性解释系统,或者称之为一种理性构造的规范模式.在西方文化中,西方数学解释宇宙的变化,引导理性的发展,参与物质世界的表述,任何学科的构建都必须按照文化理性的要求模仿和运用数学的模式.用数学解释一切是西方数学在与其适应的文化获取的价值观念.
在中国文化发展中,我国古代数学筹算操作的机械化运演形成的计算体系来源于作为原始数学的竹棍操作运演在历史进程中的演化.
中国古代是借助于竹棍为特定物进行数字、数学操作运演的民族.中国古代数学具有外算与内算的双重功能,即“算数万物”的算术性功能和神秘主义的解释性功能(注:俞晓群,“论中国古代数学的双重意义”,载《自然辩证法通讯》,1992年第4期.).竹棍既是中国原始计数物又是某些神秘性的表示物.例如中国原始巫术中的蓍草就是运用竹棍或类似竹棍的排演操作来表现某种神秘性的.《周易》中的揲蓍之法就是一种有代表性的原始数学的操作运演,只不过它表现的是神秘性的解释形式.与古希腊以一种理性表现自己的解释力量,以脱离具体事例而表现自己的数量解释意义不同,中国原始数学从一开始就把自己的神秘性、数量性特征蕴含在由竹棍的排演形式之中,是一种由以神秘性为主要特征的竹棍占卜的《周易》竹棍排演体系,逐步演化为以数量性特征为主而形成的筹算的运演体系,依靠编造某类具体实际生产、生活中的例子来表现自己的数量运演作用.中国原始竹棍排演的这种转变,使筹算失去了神秘性的主体地位,从而也失去了可能作为宗教与哲学的思维性的研究方向,因而筹算不可能具备西方数学那种用数学理性解释一切的价值取向,而在中国文化的特定氛围中,筹算主要是作为纯数量意义的运演而成为适应这种文化意义的一种技艺,并发展成为一种计算运演发达的技术.从文化系统角度来看,筹算是一种用数量变化意义来解释实际问题的操作运演的应用子系统.筹算一般不直接参与理性的描述,可以说,在中国文化中,它长于对“形而下”的问题作分门别类的数量的解释,为解决问题而制定各种算法,并常常将“理”寓于“法”中,算理结合、寓理于算的特征赋予筹算解释“形而上”问题的文化功能.因此,数学的价值观念是通过发展技艺实用,而非理性思辨.刘徽在《九章》注的序中把筹算处于《周易》解释意义之下的技艺应用地位说得十分清楚:“昔者包牺氏始画八卦,以通神明之德,以类万物之情,作九九之术以合六爻之变.”中国文化中,筹算的价值取向就是作为“六爻之变”意义基础上的应用技艺,并以快速、准确、简洁解决具体问题来发展自己的操作运演.
因此,中国古代数学不仅未形成以宗教、哲学的层次思辨自己的方法、结构形式,而是形成了专司具体数学问题的特征.中国古代数学在文化传统中的价值取向就是在筹算运演机械重复的条件下尽力构造简明的运演方法,准确迅速地解决实践提出的具体问题.
中国传统的价值观念以及筹算的技艺型价值取向,决定了中国古代数学的发展和构造模式,这种筹算数学的价值取向保证了中国古代数学机械化特色的发展方向,注重数学实际应用的层次不断发展,机械化的计算技术和水平不断提高.中国古人借助于算筹这一特殊工具,将各种实际问题分门别类,进行有效的布列和推演,在比率算法、“方程”术、开方术、割圆术、大衍求一术、天元术、四元术、垛积招差术等等方面都取得辉煌成果,在宋元时期数学达到高潮.元代以后发展的珠算制是筹算制的发展改革和继续,可以说,中国传统数学在数量关系上是以算筹制为主线贯穿一起,以提高机械化的计算技术来解决实际问题为目标的.同时,文化价值观的传统特点也造就了一批传播和发展作为技艺数学的群体,这是促进数学机械化发展的人才优势,尤其是在相对稳定的文化环境中,其传统价值观念发挥了重要作用.
从文化价值系统发展的阶段分析,我国的筹算体系和模式在宋元时期达到数学的高峰在很大程度上是算法机械化达到最高水平.贾宪三角和增乘开方法是对《九章》以来开方程序的重大提高和创造,秦九韶的正负开方术又把增乘开方法发展到十分完备的境地,其大衍求一术也是在历代对“上元积年”推算基础上将“物不知数”问题解法发展到最一般的机械化程序.李冶的天元术更是对列方程算法的重大改进和突破,同时也是几何代数化思想的完美体现.从天元术到四元术,是解一般高次方程向多元高次方程组发展的必然结果和要求.因此,我国在宋元时期算法机械化达到空前的高水平,是与传统数学文化价值观的要求相一致的,是我国筹算文化排列模式和变换技术长期积累后的自然发展,它是我国筹算体系下的数学计算以快速、准确、简洁解决一类具体问题而发展自己的操作运演的必然趋势和结果.
当然,中国古代数学并非没有理性研究和创造.中国古代数学的筹算体系和机械化特色,决定了它不可能形成如同欧几里德《几何原本》那样完整的演绎逻辑系统,而由于筹算本身的直觉启示、模型构造性特点以及特殊的运演排列的结构和形式,决定了中国古代数学是以解决实际问题为目的的抽象模型化方法、化归方法,概括出一般原理、原则用以解决一大类问题的归纳和演绎方法相结合的有机统一,决定了中算的“寓理于算”、算理结合的主要特色.由于中算的“寓理于算”常常是将“理”寓于“法”中,许多中算算法如更相减损术、变分术、盈不足术、割圆术、方程术、大衍求一术等等,算法步骤精细,一步一步推导十分明确,有“不证自明”的效用,而对几何问题同样是采取几何代数化的形数结合,“寓理于算”.开平方、开立方和解高次方程的方法,都由几何模型导出,从图验法到宋元算家的演段法,其本质相同,但更测重于阐明算法的合理性而不是阐明几何关系.
在中西文化的差异中,我们深刻地体会到,西方科学的模式不会也不可能是人类科学的唯一发展模式,西方科学的价值标准不应该实际上也不可能成为人类古代科学唯一的评价标准.这正如像N.席文提问的那样:“为什么评判非欧文明史总是以其是否或接近于欧洲早期科学或近代科学的某些方面为试金石,为什么早期欧洲科学无需检验呢