证明线性方程组 X1-X2=a1 X2-X3=a2 X3-X4=a3 x4-x5=a4 X5-X1=a5 有解的充分必要
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 20:57:57
证明线性方程组 X1-X2=a1 X2-X3=a2 X3-X4=a3 x4-x5=a4 X5-X1=a5 有解的充分必要条件是a1+a2+a3+a4+a5=0,
并在有解的情况下,求它的一般解?什么叫做一般解?
并在有解的情况下,求它的一般解?什么叫做一般解?
方程组的一般解是指所有解,又称通解.
增广矩阵 =
1 -1 0 0 0 a1
0 1 -1 0 0 a2
0 0 1 -1 0 a3
0 0 0 1 -1 a4
-1 0 0 0 1 a5
r5+r1+r2+r3+r4
1 -1 0 0 0 a1
0 1 -1 0 0 a2
0 0 1 -1 0 a3
0 0 0 1 -1 a4
0 0 0 0 0 a1+a2+a3+a4+a5
所以方程组有解a1+a2+a3+a4+a5=0
此时,增广矩阵 -->
1 -1 0 0 0 a1
0 1 -1 0 0 a2
0 0 1 -1 0 a3
0 0 0 1 -1 a4
0 0 0 0 0 0
r3+r4,r2+r3,r1+r2
1 0 0 0 -1 a1+a2+a3+a4
0 1 0 0 -1 a2+a3+a4
0 0 1 0 -1 a3+a4
0 0 0 1 -1 a4
0 0 0 0 0 0
方程组的一般解为:
(a1+a2+a3+a4,a2+a3+a4,a3+a4,a4,0)' + c(1,1,1,1,1)'.
增广矩阵 =
1 -1 0 0 0 a1
0 1 -1 0 0 a2
0 0 1 -1 0 a3
0 0 0 1 -1 a4
-1 0 0 0 1 a5
r5+r1+r2+r3+r4
1 -1 0 0 0 a1
0 1 -1 0 0 a2
0 0 1 -1 0 a3
0 0 0 1 -1 a4
0 0 0 0 0 a1+a2+a3+a4+a5
所以方程组有解a1+a2+a3+a4+a5=0
此时,增广矩阵 -->
1 -1 0 0 0 a1
0 1 -1 0 0 a2
0 0 1 -1 0 a3
0 0 0 1 -1 a4
0 0 0 0 0 0
r3+r4,r2+r3,r1+r2
1 0 0 0 -1 a1+a2+a3+a4
0 1 0 0 -1 a2+a3+a4
0 0 1 0 -1 a3+a4
0 0 0 1 -1 a4
0 0 0 0 0 0
方程组的一般解为:
(a1+a2+a3+a4,a2+a3+a4,a3+a4,a4,0)' + c(1,1,1,1,1)'.
证明线性方程组 X1-X2=a1 X2-X3=a2 X3-X4=a3 x4-x5=a4 X5-X1=a5 有解的充分必要
若线性方程组x1+x2=a1,x2+x3=a2,x3+x4=a3,x4+x1=a4有解,则常数a1,a2,a3,a4应满
证明:线性方程组:X1–X2=a1 X2–X3=a2 X3–X4=a3 X4–X1=a4有解的充分必要条件是:a1+a2
min= X1+X2+X3+X4+X5
一道线性代数题求证:线性方程组x1-x2=a1x2-x3=a2x3-x4=a3x4-x5=a4-a1x5=a5有解的充要
求齐次线性方程组x1+2x2+x3+x4+x5=1 2x1+4x2+3x3+x4+x5=2 -x1-2x2+x3+3x4
解方程组X2+X3+X4=1 X1+X2+X3=5 X3+X4+X5=-5 X4+X5+X1=-3 X5+X1+X2=2
解一道方程组x1+x2+x3=5,x2+x3+x4=1,x3+x4+x5=-5,x4+x5+x1=-3,x5+x1+x2
已知正整数x1 、 x2 、x3 、 x4 、 x5、,且x1 + x2 + x3+ x4 + x5= x1 x2 x3
求齐次方程组的的一般解(x1+x2+x3+x4+x5=0,3x1+2x2+x3+x4-3x5=0,x1+2x3+2x4+
X1 - X3 - X4 -5X5=0 X1+2X2+3X3+3X4+7X5=0 X1+X2+X3+X4+X5=0 X2
已知x1+x2+x3+x4+x5+x6+x7=2010,且x1+x2=x3,x2+x3=x4,x3+x4=x5,x5+x