如图所示在RT三角形ABC中,角ACB=90度,AC=BC.D为BC中点,CE垂直AD于E,交AB于点F.连接DF求证角
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 10:19:40
如图所示在RT三角形ABC中,角ACB=90度,AC=BC.D为BC中点,CE垂直AD于E,交AB于点F.连接DF求证角ADC=角BD
此题与市面上题目不同,请认真思考
是角BDF,打不上去了,嘻嘻,sorry
此题与市面上题目不同,请认真思考
是角BDF,打不上去了,嘻嘻,sorry
是证明∠ADC=∠BDF吧~
法一:
证明:
延长CF到G,使EG=CE,连接BG,则E是线段CG的中点
∵D是BC的中点
∴ED是三角形BCG的中位线
ED//BG
∴AF:BF=AE:BG.(1)
∵△ABC为等腰RT△
∴AC=CB
∠ACE=∠ADC(直角三角形中易证).(2)
∵ED//BG
∠AEC=∠CGB=90°,∠ADC=∠CBG联立(2)知∠ACE=∠CBG
∴△CAE≌△BCG(AAS)
CE=BG,AE=CG
∵CE=EG,
∴AE=2BG带入(1)有AF:BF=2:1.(3)
∵AC=BC=2BD即AC:BD=2:1.(4)
联立(3)(4)AF:BF=AC:BD
∵等腰RT△ABC中∠CAF=∠DBF=45°
∴△ACF∽△BDF(相似三角形的判定定理之一)
∠ACF=∠BDF联立(2)得
∠ADC=∠BDF
法二:
证明:过B作BG⊥BC交CF的延长线于G
∵△ABC为等腰RT△
∴AC=BC,∠CBA=45°
∵∠CAD=∠BCG(直角三角形中易得),∠ACD=∠CBG=90°
∴△ACD≌△CBG(AAS)
CD=BG,∠ADC=∠G
∵D为BC中点,BD=CD
∴BD=BG
∵∠FBG=90°-∠CBA=90°-45°=45°=FBD
BF为公共边
∴FBD≌△FBG(SAS)
∠BDF=∠G
∵∠ADC=∠G
∴∠ADC=∠BDF
法三见参考部分
法一:
证明:
延长CF到G,使EG=CE,连接BG,则E是线段CG的中点
∵D是BC的中点
∴ED是三角形BCG的中位线
ED//BG
∴AF:BF=AE:BG.(1)
∵△ABC为等腰RT△
∴AC=CB
∠ACE=∠ADC(直角三角形中易证).(2)
∵ED//BG
∠AEC=∠CGB=90°,∠ADC=∠CBG联立(2)知∠ACE=∠CBG
∴△CAE≌△BCG(AAS)
CE=BG,AE=CG
∵CE=EG,
∴AE=2BG带入(1)有AF:BF=2:1.(3)
∵AC=BC=2BD即AC:BD=2:1.(4)
联立(3)(4)AF:BF=AC:BD
∵等腰RT△ABC中∠CAF=∠DBF=45°
∴△ACF∽△BDF(相似三角形的判定定理之一)
∠ACF=∠BDF联立(2)得
∠ADC=∠BDF
法二:
证明:过B作BG⊥BC交CF的延长线于G
∵△ABC为等腰RT△
∴AC=BC,∠CBA=45°
∵∠CAD=∠BCG(直角三角形中易得),∠ACD=∠CBG=90°
∴△ACD≌△CBG(AAS)
CD=BG,∠ADC=∠G
∵D为BC中点,BD=CD
∴BD=BG
∵∠FBG=90°-∠CBA=90°-45°=45°=FBD
BF为公共边
∴FBD≌△FBG(SAS)
∠BDF=∠G
∵∠ADC=∠G
∴∠ADC=∠BDF
法三见参考部分
如图所示在RT三角形ABC中,角ACB=90度,AC=BC.D为BC中点,CE垂直AD于E,交AB于点F.连接DF求证角
在Rt△ABC中,∠ACB=90°,AC=BC,D为BC的中点,连接AD,CE⊥AD于点E,交AB于F,连接DF.求证∠
在RT△ABC中,∠ACB=90°,AC=BC,D为BC的中点,CE⊥AD于E,交AB于F,连接DF,求证:∠ADC=∠
已知:如图,在RT△ABC中,∠ACB=90°,AC=BC,D为BC中点.CE⊥AD于E,交AB于F,连接DF.求证:∠
已知如图,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC的中点,CE⊥AD于E,交AB于F,连接DF,求证:∠
在RT三角形ABC中,∠ACB=90°,AC=BC,D为BC的中点,CE⊥于E,交AB于F,连接DF.求证:∠ADC=∠
在Rt三角形ABC中,角ACB=90度,AC=BC,D为BC边的中点,CE垂直于AD,垂足为E,BF平行于AC,交CE的
在Rt三角形ABC中,角BAC=90,AD⊥BC于点D,E是AD中点,连接ED并交AB的延长线于点F,求证AB/AC=D
在等腰直角三角形ABC中角ACB=90',D为BC中点.CE垂直AD于E,BF//AC,CE延长于点F.求证:AB垂直平
如图,Rt三角形ABC中,角ACB=90度,AC=BC,AD平分角BAC交BC于D,CE垂直AD于F,交AB于E.(1)
一道初二的几何题,在RT三角形ABC中,角ACB=度,D为AB的中点,DE、DF分别交AC于点E,交BC于点F,且DE垂
如图,在三角形ABC中,AC=BC,角ACB=90,M是AC的中点,CE垂直BM于E,延长CE交AB于D,连接MD,求证