顺次计算1^3,1^3+2^3,.的前4项,由此猜想an=1^3+2^3+3^3+...+n^3的结果,并用数学证明法证
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 14:15:08
顺次计算1^3,1^3+2^3,.的前4项,由此猜想an=1^3+2^3+3^3+...+n^3的结果,并用数学证明法证明
1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6=[n(n+1)/2]^2
附带证明如下:
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
.
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
=3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2
(n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2]
=(2n^2+2n+1)(2n+1)
=4n^3+6n^2+4n+1
2^4-1^4=4*1^3+6*1^2+4*1+1
3^4-2^4=4*2^3+6*2^2+4*2+1
4^4-3^4=4*3^3+6*3^2+4*3+1
.
(n+1)^4-n^4=4*n^3+6*n^2+4*n+1
各式相加有
(n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+n
4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n
=[n(n+1)]^2
1^3+2^3+...+n^3=[n(n+1)/2]^2
附带证明如下:
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
.
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
=3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2
(n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2]
=(2n^2+2n+1)(2n+1)
=4n^3+6n^2+4n+1
2^4-1^4=4*1^3+6*1^2+4*1+1
3^4-2^4=4*2^3+6*2^2+4*2+1
4^4-3^4=4*3^3+6*3^2+4*3+1
.
(n+1)^4-n^4=4*n^3+6*n^2+4*n+1
各式相加有
(n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+n
4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n
=[n(n+1)]^2
1^3+2^3+...+n^3=[n(n+1)/2]^2
顺次计算1^3,1^3+2^3,.的前4项,由此猜想an=1^3+2^3+3^3+...+n^3的结果,并用数学证明法证
已知数列{an}中,a1=2,an+a(n-1)=3^n猜想an的表达式并用数学归纳法加以证明
a(1)=2 A(n)+A(n-1)=3^n n>=2 猜想an的表达式并用数学归纳法证明
猜想Sn=1/1*2+1/2*3,...,1/n*(n+1)的表达式,并用数学归纳法证明
(1)数刑{an}满足Sn=2n-an,n属於N*,先计算前4项后,猜想an的运算式,并用数归纳法证明.
设Sn=1^2-2^2+3^-4^2+...+(-1)^(n-1)*n^2,猜想Sn关于n的表达式并用数学归纳法证明
猜想1^2+3^2+5^2+……+(2n-1)^2的表达式,并用数学归纳法证明
a1=1/6,前n项和sn=n(n+1)/2*an,猜想an的通项公式,并用数学归纳法证明
已知,a1=1/3 且前N项的算术平均数等于第N项的2N-1倍 求前5项,并用数学归纳法证明an=1/(2n-1)(2n
Sn=1/2(an+1/an) Sn是前n项和 求a1,a2,a3.猜想{an}的通项公式,并用数学归纳法证明
数学+数列+归纳法设n为正整数,若(√2+√3)^2n-1=an√2+bn√3试通过计算几个特列猜想an bn的值,并用
已知数列{an}的前n项和sn=1-2/3an,(1)计算a1,a2,a3(2)根据计算求an的通项公式,并用数归法证明