空间任意一点O和不共线三点A B C满足 OP向量=xOA向量+yOB向量+zOC向量(xyz属于R),则PABC四点共
空间任意一点O和不共线三点A B C满足 OP向量=xOA向量+yOB向量+zOC向量(xyz属于R),则PABC四点共
空间任意一点O和不共线三点A B C满足 OP向量=xOA向量+yOB向量+zOC向量(xyz属于R)则 x+y+z=1
对于空间人一点不共线的三点A,B,C,若OP(向量)=XOA+YOB+ZOC (xyz属于R),则P,A,B,C,D四点
空间向量基本定理已知空间任意一点O和不共线的三点A.B.C,满足OP=xOA+yOB+zOC(x.y.z∈R),则“点P
对空间任一点O和不共线的三点A,B,C,若:OP(向量)=XOA+YOB+ZOC,则X+Y+Z=1是四点P,A,B,C共
对空间任一点O和不共线的三点A,B,C,若:OP(向量)=XOA+YOB+ZOC (其中x+y+z=1),则四点P、A、
已知P和不共线三点A,B,C四点共面且对于空间任一点O,都有向量OP=2向量OA+向量OB+λ向量OC,则λ=
空间向量 op=xOA+yOB+zOC x+y+z=1 为什么四点就是共面的?
已知G是△ABC的重心,O是空间任意一点,若向量OG=xOA+yOB+zOC,求xyz值
已知O是空间任意一点,A.B.C.D四点满足任意三点均不共线,但四点共面,且向量OA=3x向量BO+4y向量CO+5z向
已知A,B,P三点共线,O为空间任意一点,向量OP=α向量OA+β向量OB,求α+β
向量,如果P,A,B三点共线,则有OP=xOA+yOB,(x+y=1),怎么证明