椭圆C的右焦点为F(2,0),且过点P(2,√2),直线l过点F且交椭圆C于A、B两点.若线段AB的垂直平分线与X
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 07:48:55
椭圆C的右焦点为F(2,0),且过点P(2,√2),直线l过点F且交椭圆C于A、B两点.若线段AB的垂直平分线与X
轴的交点为M(1/2,0),求直线l的方程
轴的交点为M(1/2,0),求直线l的方程
据已知,c=2 ,因此 a^2-b^2=c^2=4 ,
又椭圆过 P(2,√2),因此 4/a^2+2/b^2=1 ,
由以上两式解得 a^2=8 ,b^2=4 ,
所以,椭圆方程为 x^2/8+y^2/4=1 .
直线l过点F
设I:y=k(x-2)
A(x1,y1)B(x2,y2),AB中点(x0,y0)
x1^2/8+y1^2/4=1-----------①
x2^2/8+y2^2/4=1-----------②
②-①
(x2+x1)/8+k(y2+y1)/4=0
2x0/8+2ky0/4=0
x0+2ky0=0
线段AB的垂直平分线与X轴的交点为M(1/2,0)
设AB的垂直平分线y=-1/k(x-1/2)
y0=-1/k(x0-1/2)
y0=k(x0-2)
x0+2ky0=0
三式联立
求得k^2=1/2
k=±√2/2
直线l的方程
y=±√2/2(x-2)
化简
x-√2y-2=0
或x+√2y-2=0
又椭圆过 P(2,√2),因此 4/a^2+2/b^2=1 ,
由以上两式解得 a^2=8 ,b^2=4 ,
所以,椭圆方程为 x^2/8+y^2/4=1 .
直线l过点F
设I:y=k(x-2)
A(x1,y1)B(x2,y2),AB中点(x0,y0)
x1^2/8+y1^2/4=1-----------①
x2^2/8+y2^2/4=1-----------②
②-①
(x2+x1)/8+k(y2+y1)/4=0
2x0/8+2ky0/4=0
x0+2ky0=0
线段AB的垂直平分线与X轴的交点为M(1/2,0)
设AB的垂直平分线y=-1/k(x-1/2)
y0=-1/k(x0-1/2)
y0=k(x0-2)
x0+2ky0=0
三式联立
求得k^2=1/2
k=±√2/2
直线l的方程
y=±√2/2(x-2)
化简
x-√2y-2=0
或x+√2y-2=0
椭圆C的右焦点为F(2,0),且过点P(2,√2),直线l过点F且交椭圆C于A、B两点.若线段AB的垂直平分线与X
F为椭圆C:X2+Y22=1在Y轴正半轴的焦点,过F且斜率为负的根号2的直线L与椭圆C交于A、B两点,点P满足向量OA加
过椭圆C:x^2/6+y^2/2=1的右焦点F作斜率为k(k>0)的直线L与椭圆交于A.B两点.且坐标原点O到直线L的距
过椭圆 C: x 2 6 + y 2 2 =1 的右焦点F作斜率为k(k>0)的直线l与椭圆交于A、B两点,且坐标原点O
如图椭圆Q:X^2/A^2+Y^2/b^2=1的右焦点F(C,0)过点F的一动直线M绕点F转动,并交椭圆于AB两点P是线
高中圆锥曲线题已知F为椭圆x^2/4+y^2/3=1的右焦点,过F且斜率为k的直线l和椭圆分别交于A,B两点,线段AB的
已知椭圆C:x^2/5+y^2/3=m^2/2(m>0),经过其右焦点F且斜率为k的直线l交椭圆C于A、B两点,M为线段
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的右焦点为F(2,0),且过P(2,根号2),直线l过点F且
设椭圆X^2/4+Y^2/3=1的右焦点为F,经过点F的直线L与椭圆相交於A,B两点,与椭圆的右准线相交於点C 且向量A
设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左焦点为F,过点F的直线l与椭圆C交与A,B两点,l的倾斜角
已知O为坐标原点,F为椭圆C:x2+y2/2=1在y轴正半轴上的焦点,过F且斜率为负根号2的直线l与c交予AB两点,点P
椭圆x2/2+y2=1的左焦点为F,过点P的直线交椭圆与A,B两点并且线段AB的中点在直线x+y=0上,求直线AB的方程